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One of the most widely used properties of the multivariate Gaussian distribution, besides its tail behavior,
is the fact that conditional means are linear and that conditional variances are constant. We here show that
this property is also shared, in an approximate sense, by a large class of non-Gaussian distributions. We
allow for several conditioning variables and we provide explicit non-asymptotic results, whereby we extend
earlier findings of Hall and Li (Ann. Statist. 21 (1993) 867–889) and Leeb (Ann. Statist. 41 (2013) 464–483).
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1. Introduction

1.1. Informal summary

The property of the multivariate Gaussian law, that conditional means are linear and that con-
ditional variances are constant, is used by several fundamental statistical methods, even if these
methods per se do not require Gaussianity: the generic linear model is built on the assumption
that the conditional mean of the response is linear in the (conditioning) explanatory variables;
and the generic homoskedastic linear model rests on the additional assumption that the condi-
tional variance is constant. Linear conditional means and/or constant conditional variances are
also assumed, for example, by methods for sufficient dimension reduction such as SIR [11] or
SAVE [4], or by certain imputation techniques [14]. Elliptically contoured distributions are char-
acterized by linear conditional means [5]. And methods for spatial statistics such as Kriging rely
on Gaussianity mainly through the property that conditional means are linear and that condi-
tional variances are constant.1 But even though these properties are widely used, in a sense the
only distribution that has both linear conditional means and constant conditional variances is the
Gaussian (see also Section 1.2).

In this paper, we show that conditional means are approximately linear and that conditional
variances are approximately constant, for a large class of multivariate distributions, when the

1Distributions with linear conditional means and/or constant conditional variances are also studied, for example, in [1,3,
8,13,18,19].
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conditioning is on lower-dimensional projections. To illustrate our results, consider a random
d-vector Z that has a Lebesgue density, and a d × p matrix B . Conditional on B ′Z, we show
that the mean of Z is linear in B ′Z, and that the variance/covariance matrix of Z is constant,
in an approximate sense. Typically, our approximation error bounds are small if d is sufficiently
large relative to p. Our results extend recent findings of [9], where the case p = 1 is considered
(which, from a modeling perspective, covers only models with one explanatory variable). More
precisely, we extend and refine the results of [9] in three directions: First, we allow for the case
where p > 1, thereby also proving a result that is outlined in [6], Section 5. Second, we derive
non-asymptotic and explicit error bounds that hold for fixed d , whereas [6] and [9] only give
asymptotic results that hold as d → ∞; cf. Theorem 2.1. And third, we also give asymptotic
results where p is allowed to increase with d ; see Corollary 2.4. In many cases, our error bounds
go to zero if p/ logd → 0.

The rest of the paper is organized as follows: We continue this section with a more detailed de-
scription of the results that we derive. Our main results are then stated in Section 2. In Section 3,
we provide a number of examples where the assumptions of our main theorem are satisfied and
we discuss further extensions of our work. Finally, Section 4 gives a high-level description of the
proof. The more technical low-level parts of the proof as well as proofs of results from Section 3
are collected in the online supplementary material [16].

1.2. Outline of results

Consider a random d-vector Z that has a Lebesgue density, and that is centered and standardized
so that EZ = 0 and EZZ′ = Id . And take a d ×p matrix B with orthonormal columns. [While we
do rule out degenerate distributions, the requirement that Z is centered and standardized, and the
requirement that the columns of B are orthonormal, are inconsequential; cf. Remark 1.1 as well
as Section 3.3.] Our objective is to show that the conditional mean and the conditional variance
of Z given B ′Z are close to what they would be if Z were Gaussian. In the following, we use
the notation ‖ · ‖ to denote the Euclidean norm of vectors and the spectral norm of matrices; the
meaning of ‖ · ‖ will always be clear from the context.

Instead of the conditional mean and variance, it will be convenient to focus on the first two
conditional moments, that is, on E[Z‖B ′Z] and on E[ZZ′‖B ′Z]. If both the expressions∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥ and
∥∥E[

ZZ′‖B ′Z
] − (

Id − BB ′ + BB ′ZZ′BB ′)∥∥
are equal to zero, then the conditional mean of Z given B ′Z is linear in B ′Z, and the corre-
sponding conditional variance is constant in B ′Z. But the only distribution, which satisfies this
for all B , is the Gaussian law; cf. the discussion in [9], page 466. We will show that a weaker
form of this requirement, namely that the expressions in the preceding display are close to zero
in probability for most B , is satisfied by a much larger class of distributions, provided mainly
that d is sufficiently large relative to p.

For the case where p = 1, it was shown in [9], for each t > 0, that

sup
B∈G

P
(∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥ > t
)

and (1.1)
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sup
B∈G

P
(∥∥E[

ZZ′‖B ′Z
] − (

Id − BB ′ + BB ′ZZ′BB ′)∥∥ > t
)

(1.2)

converge to zero as d → ∞, under some conditions, where the sets G are collections of d × p

matrices with orthonormal columns that become large as d → ∞. More precisely, for νd,p(·)
denoting the uniform distribution on the set of all such matrices (i.e., the Haar measure on the
Stiefel manifold Vd,p), the sets G satisfy νd,p(G) → 1 as d → ∞. [Obviously, G depends on
d and also on p, although this dependence is not shown explicitly in our notation.] In the case
where p = 1 covered in [9], the sets G are collections of unit-vectors, and νd,1(·) is the uniform
distribution on the unit sphere, in Rd . We derive a non-asymptotic version of this result, that
is, explicit upper bounds on (1.1) and (1.2), and also on 1 − νd,p(G), that hold for fixed d and
p, where we allow for p > 1; see Theorem 2.1. Moreover, we also provide an asymptotic result
where our upper bounds go to zero as d → ∞, where p may increase with d ; cf. Corollary 2.4. In
many cases, our upper bounds are small provided that p/ logd is small. Both our non-asymptotic
and our asymptotic result, i.e., both Theorem 2.1 and Corollary 2.4, hold uniformly over classes
of distributions for Z, as outlined in Remark 2.2.

Of course, our results rely on further conditions on the distribution of Z (in addition to the
existence of a Lebesgue density and the requirements that EZ = 0 and EZZ′ = Id ). In particular,
we require that the mean of certain functions of Z, and of i.i.d. copies of Z, is bounded; see the
bounds (b1)(a) and (b2), as well as the attending discussion in Section 2. And we require that
certain moments of Z are close to what they would be in the Gaussian case; see (b1)(b)–(c).
From a statistical perspective, we stress that our results rely on bounds that can be estimated
from appropriate data, as outlined in the discussion leading up to Theorem 2.1. One particularly
simple example, where these bounds hold, and where the error bounds in Theorem 2.1 get small
as d gets large, is the case where the components of Z are independent, with bounded marginal
densities and bounded marginal moments of sufficiently large order; see Example 3.1. Finally,
we emphasize that (b1) and (b2) do not require that the components of Z are independent.

The results in this paper demonstrate that the requirement of linear conditional means and
constant conditional variances (which is quite restrictive as discussed in the second paragraph of
this subsection) is actually satisfied, in an approximate sense, by a rather large class of distribu-
tions. Some implications, namely to sparse linear modeling, and to sufficient dimension reduction
methods like SIR or SAVE, are discussed in [9], Section 1.4. And while the discussion in [9] is
hampered by the fact that only situations with p = 1, that is, only models with one explanatory
variable, are covered in that paper, our results show that these considerations extend also to the
case where p > 1, that is, to more complex models with several explanatory variables.

Remark 1.1. (i) Our requirements, that the random d-vector Z is centered and standardized,
and that the matrix B has orthonormal columns, are inconsequential in the following sense:
Consider a random d-vector Y such that E[Y ] = μ and Var[Y ] = � are both well-defined and
finite, and such that Y has a Lebesgue density (which also entails that � is invertible). Moreover,
consider a d × p matrix A with linearly independent columns. If Y were Gaussian, we would
have E[Y‖A′Y ] = μ + �A(A′�A)−1A′(Y − μ). In general, one easily verifies that

∥∥E[
Y‖A′Y

] − (
μ + �A

(
A′�A

)−1
A′(Y − μ)

)∥∥ ≤ ‖�‖1/2
∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥
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holds for Z = �−1/2(Y − μ) and B = �1/2A(A′�A)−1/2. Note that Z has a Lebesgue density;
that Z is centered and standardized so that E[Z] = 0 and E[ZZ′] = Id ; and that the columns of
B are orthonormal. In particular, we see that the conditional mean of Y given A′Y is approxi-
mately linear if the same is true for the conditional mean of Z given B ′Z, provided only that the
largest eigenvalue of � is not too large. A similar consideration applies, mutatis mutandis, to the
conditional variance of Y given A′Y and that of Z given B ′Z. For further details, in particular
about the role of �, see Section 3.3.

(ii) Conditioning on B ′Z is equivalent to conditioning on BB ′Z, which is the orthogonal
projection of Z onto the column space of B . Therefore, we could formulate Theorem 2.1 for
collections of p-dimensional subspaces S of Rd (elements of the Grassmann manifold Gd,p)
instead of matrices B (from the Stiefel manifold Vd,p), and thus replace (1.1) by

sup
S∈H

P
(∥∥E[Z‖PSZ] − PSZ

∥∥ > t
)
,

with PS denoting the orthogonal projection matrix for the subspace S. Here, H denotes the image
of the set G ⊆ Vd,p from (1.1) under the mapping that maps a matrix B into its column space S.
Note that the image of the Haar measure on Vd,p under this mapping is the Haar measure on
Gd,p ; see also [2], Theorem 2.2.2(iii). In a similar manner, one can also write (1.2) in terms of
the Grassmann manifold, namely as

sup
S∈H

P
(∥∥E[

ZZ′‖PSZ
] − (

Id − PS + PSZ(PSZ)′
)∥∥ > t

)
.

2. Results

We first present our main non-asymptotic result, that is, Theorem 2.1, and the bounds (b1) and
(b2) that it relies on. These bounds depend on a constant k that will be chosen as needed later.
In Corollary 2.4 and the attending discussion, we then present asymptotic scenarios in which the
constants in (b1) and (b2) can be controlled, such that the error bounds in Theorem 2.1 become
small. Throughout the following, consider a random d-vector Z that has a Lebesgue density
and that satisfies EZ = 0 as well as EZZ′ = Id . For k ∈ N, write Z1, . . . ,Zk for i.i.d. copies
of Z, and write Sk for the k × k Gram-matrix Sk = (Z′

iZj /d)ki,j=1. For g ≥ 0, a monomial of

degree g in the elements of Sk − Ik is an expression of the form G = ∏g

�=1(Sk − Ik)i�,j�
for

(i�, j�) ∈ {1, . . . , k}2, il ≤ jl , 1 ≤ � ≤ g (with the convention that G = 1 in case g = 0). We say
that G has a linear (resp. quadratic) factor if one of the pairs, say (i1, j1), occurs exactly once
(resp. twice).

(b1) Fix k ∈ N.

(a) There are constants ε ∈ [0,1/2] and α ≥ 1 so that E‖√d(Sk − Ik)‖2k+1+ε ≤ α.
(b) There are constants β > 0 and ξ ∈ (0,1/2] that satisfy the following: For any mono-

mial G = G(Sk − Ik) in the elements of Sk − Ik , whose degree g satisfies g ≤ 2k, we
have |dg/2EG − 1| ≤ β/dξ if G consists only of quadratic factors in elements above
the diagonal, and |dg/2EG| ≤ β/dξ if G contains a linear factor.
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(c) The constants β and ξ in (b) also satisfy the following: Consider two monomials G =
G(Sk − Ik) and H = H(Sk − Ik) of degree g and h, respectively, in the elements of
Sk −Ik . If G is given by Z′

1Z2Z
′
2Z3 · · ·Z′

g−1ZgZ
′
gZ1/d

g , if H = ∏h
�=1(Sk −Ik)i�,j�

with {1, . . . , g} ⊆ {i1, j1, . . . , ih, jh}, and if 2 ≤ h < g ≤ k, then |dgEGH | ≤ β/dξ .

(b2) For fixed k ∈ N, there is a constant D ≥ 1, such that the following holds true: If R is an
orthogonal d × d matrix, then a marginal density of the first d − k + 1 components of RZ is

bounded by
(

d
k−1

)1/2
Dd−k+1.

The bounds in (b1) and (b2) essentially guarantee that moments of certain functions of the
Gram matrix Sk are either bounded (in (b1)(a) and (b2)) or not too different from what they
would be if Z were Gaussian (in (b1)(b)–(c)). We will impose (b1) and (b2) with k = 2 when
considering conditional means, and with k = 4 when considering conditional variances. Clearly,
(b1) becomes stronger as k increases. The specific requirements in (b1) are minimal for our
current method of proof and the bound in (b2) is chosen in such a way that certain constants γ1
and γ2 appearing in Theorem 2.1 do not depend on the dimension d . Other methods of proof, if
such can be found, may rely on different conditions. For further discussion and specific examples
where our conditions apply, see Section 3.1.

The bounds in (b1) are non-asymptotic versions of condition (t1) in [9], and the bound in (b2)
coincides with condition (t2) in that reference. The bounds in (b1)(b)–(c) are written as β/dξ ,
because in Corollary 2.4 we will consider situations where these bounds hold for constants β and
ξ that either are both independent of d , or that are such that β is independent of d while ξ depends
on d so that 1/dξ → 0. In (b2), note that the upper bound on the marginal densities can increase
in d . The bound in (b2) appears to be qualitatively different from (b1) in that it does not directly
impose restrictions on moments involving the standardized Gram matrix Sk −Ik . However, (b2) is
used only to bound the pth moment of detS−4(k+1)

l for l = 1, . . . , k; cf. Lemma E.5 and the proof
of Proposition 4.4 in Appendix E of the supplement. Just like the bound in (b1), the requirement
of a uniform bound on maxł≤k EdetS−4p(k+1)

l becomes more restrictive if k increases. From a
statistical perspective, we note that the moment-bounds discussed here can be estimated from
a sample of independent copies of Z. Indeed, population means like E‖Sk − Ik‖2k+1+ε , EG,
EGH , or EdetS−4p(k+1)

l as above are readily estimated by appropriate sample means. In this
sense, we rely on bounds that can be estimated from data.

Theorem 2.1. For fixed d , consider a random d-vector Z that has a Lebesgue density fZ and
that is standardized such that EZ = 0 and EZZ′ = Id .

(i) Suppose that (b1)(a)–(b) and (b2) hold with k = 2. Then, for each p < d and for each
τ ∈ (0,1), there is a Borel set G ⊆ Vd,p such that (1.1) is bounded by

1

t
d−τξ1 + γ1

1 − τ

p

3ξ1 logd
(2.1)

for each t > 0, and such that

νd,p

(
G

c
) ≤ κ1d

−τξ1(1− γ1
τ

p
ξ1 logd

)
, (2.2)
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where ξ1 is given by ξ1 = min{ξ, ε/2+1/4,1/2}/3 and γ1 = max{g1,6+2 log(2D
√

πe)}. Here,
the constant κ1 depends only on α and β , and g1 is a global constant.

(ii) Suppose that (b1)(a)–(c) and (b2) hold with k = 4. Then, for each p < d and for each
τ ∈ (0,1), there is a Borel set G ⊆ Vd,p so that both (1.1) and (1.2) are bounded by

1

t
d−τξ2 + γ2

1 − τ

p

5ξ2 logd
(2.3)

for each t > 0, and such that

νd,p

(
G

c
) ≤ 2κ2d

−τξ2(1− γ2
τ

p
ξ2 logd

)
. (2.4)

Here, ξ2 is given by ξ2 = min{ξ, ε/2 + 1/4,1/2}/5 and γ2 = max{g2,10 + 4 log(2D
√

πe)}. The
constant κ2 depends only on α and β , and g2 is a global constant.

(iii) The set G in both parts (i) and (ii) can be chosen to have the following additional prop-
erties: G is right-invariant under the action of the orthogonal group of order p and it is left
orthogonally equivariant, that is, G =G(fZ) depends on the distribution of Z in such a way that
G(fRZ) = RG(fZ), for every d × d orthogonal matrix R.

The constants g1, g2, κ1 and κ2 in part (i) and (ii) can be obtained explicitly upon detailed
inspection of the proof.

With Theorem 2.1, we aimed to obtain the best possible upper bounds for (1.1), (1.2) and
νd,p(Gc) that our current technique of proof delivers. It is likely that better bounds can be ob-
tained under stronger assumptions (like in the case where the components of Z are indepen-
dent) together with an alternative method of proof. In particular, when bounding (1.1) in The-
orem 2.1(i), the term γ1

1−τ
p

3ξ1 logd
is obtained by bounding P(‖B ′Z‖2 > (1 − τ)3ξ1 log(d)/γ1)

using Chebyshev’s inequality; cf. the proof of Lemma B.2 in the supplement. Under appropri-
ate additional assumptions on the tails of ‖B ′Z‖, this bound can be dramatically improved. The
bound on both (1.1) and (1.2) in Theorem 2.1(ii) can be improved in a similar fashion (cf. Sec-
tion 3.2). When proving Theorem 2.1, we derive upper bounds for (1.1) and (1.2), on the one
hand, and for νd,p(Gc), on the other hand, that are antagonistic in the sense that one can be re-
duced at the expense of the other (namely in the proof of Lemma B.2). For Theorem 2.1, we have
balanced these bounds so that both are of the same leading order in d , that is, d−τξ1 in part (i)
and d−τξ2 in part (ii).

Remark 2.2. Because the error bounds in Theorem 2.1 depend on Z only through the constants
that occur in (b1) and (b2), the theorem a fortiori holds uniformly over the class of all distributions
for Z that satisfy (b1) and (b2). For example: Fix constants ε, α, β and ξ as in (b1), fix D as
in (b2), and write Z for the class of all random d-vectors Z that satisfy the bounds (b1)(a)–(c)
and (b2) for k = 4, that have a Lebesgue density, and that are centered and standardized. Then,
for each Z ∈ Z and for each p < d , there exits a Borel set G ⊆ Vd,p (that depends on Z), so
that (1.1), (1.2) and also νd,p(Gc) are bounded as in Theorem 2.1(ii). Similar considerations also
apply, mutatis mutandis, to Theorem 2.1(i) and to Corollary 2.4, which follows.
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Remark 2.3. Our results provide conditions under which conditional means are approximately
linear and conditional variances are approximately constant, provided that p/ logd is small. The-
orem 2.1 provides such a statement for a fixed distribution of Z and for many B . By a slight
change of perspective, this also leads to a similar statement that holds for fixed B and many
distributions of Z, cf. [17]. We cannot deal with a fixed matrix B and a fixed distribution of Z

with our methods. Whether, say, the conditional variance is approximately constant for given B

and Z depends on the particulars of B and Z, irrespective of p and d . A few trivial examples,
however, are well known. For instance, if the distribution of Z is spherically symmetric, then
the conditional expectation of Z given B ′Z is exactly linear for every matrix B . Moreover, the
conditional expectation is linear and the conditional variance is constant if the components of Z

are independent and B = (ej1 , . . . , ejp ), where ej is the j th element of the standard basis in Rd .
See also Section 2.3.4. in Chapter 2 of [15] for a non-trivial example with p = 1 and d = 2.

Corollary 2.4. For each d , consider a random d-vector Z(d) that has a Lebesgue density and
that satisfies EZ(d) = 0 and EZ(d)Z(d)′ = Id . And for each d , suppose that (b1)(a)–(c) and (b2)
hold with Z(d) replacing Z and with k = 4, such that the constants ε, α, β , and D in these bounds
do not depend on d , while the constant ξ = ξd in (b1) may depend on d as long as d−ξd → 0 as
d → ∞. Moreover, consider a sequence of integers pd < d such that pd/(ξd logd) → 0. Then
Theorem 2.1(ii) applies for each d , with Z(d) and pd replacing Z and p, respectively, and the
error bounds provided in the theorem go to zero as d → ∞.

Corollary 2.4 provides an asymptotic version of Theorem 2.1(ii). Similarly, an asymptotic ver-
sion of Theorem 2.1(i) can also be obtained, mutatis mutandis. This provides a direct extension
of Theorem 2.1 of [9] from the case p = 1 covered in that reference to the case where p > 1,
also allowing for p to grow with d . [Indeed, it is elementary to verify that conditions (t1) and (t2)
with k = 4 in [9] imply that the conditions of the corollary are satisfied with ε = 0 and for some
sequence ξd such that d−ξd → 0 as d → ∞. And if (t1) and (t2) hold with k = 2, one obtains
conditions that imply an asymptotic version of Theorem 2.1(i).]

If Corollary 2.4 applies with constants ξd satisfying ξd → ξ∞ > 0 (e.g., in the case where
the ξd do not depend on d , which is also discussed in Example 3.1), the corollary’s requirement
on pd reduces to pd = o(logd). In that case, the bounds on νd,p(Gc) in Theorem 2.1 are of
polynomial order in d . But if Corollary 2.4 applies with ξd → 0, then the stronger requirement
pd = o(ξd logd) is needed, and the bounds on νd,p(Gc) in Theorem 2.1 can be of slower order
in d . Note that d−ξd → 0 entails that ξd logd → ∞, so that the constant sequence pd = p always
satisfies the growth condition in Corollary 2.4.

3. Examples and extensions

3.1. Examples

In this section, we discuss a few simple examples of multivariate distributions for which our
assumptions (b1) and (b2) are satisfied and explicit values for the quantities ε and ξ can be
given. First, we consider the case of a product distribution on Rd with moments of sufficiently
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high order and bounded component densities. For the proof, we refer the reader to Example A.1
in [10].

Example 3.1 [9]. Suppose that the random d-vector Z = (z1, . . . , zd)′ has independent compo-
nents and satisfies EZ = 0, EZZ′ = Id , and fix k ∈ N.

(i) If E|zi |4k+4 ≤ μ4k+4, for some universal constant μ4k+4 > 0 and for all i = 1, . . . , d ,
then the bounds in (b1)(a)–(b) hold with k as chosen here, with ε = ξ = 1/2 and the constants α

and β depend only on k and μ4k+4.
(ii) If E|zi |2k+1 ≤ μ2k+1, for some universal constant μ2k+1 > 0 and for all i = 1, . . . , d ,

then the bounds in (b1)(c) hold with k as chosen here, with ξ = 1/2 and the constant β depends
only on k and μ2k+1.

(iii) If all the marginal Lebesgue densities of the components of Z exist and are bounded by
a constant D ≥ 1 then the bound in (b2) applies for the same constant D and every value of
k ∈ {1, . . . , d}.

From Example 3.1 we see, in particular, that if the random vector Z has independent com-
ponents with bounded densities and bounded 12th marginal moments, then the bounds of The-
orem 2.1(i) hold, with ξ1 = 1/6 (note that k has to be chosen as k = 2 here). If the components
of Z even have 20 marginal moments bounded by a universal constant, then also the bounds of
Theorem 2.1(ii) hold, with ξ2 = 1/10 (in this case k = 4).

The assumptions of Theorem 2.1, however, are not limited to product distributions, as the
following examples show.

Example 3.2. Suppose that the random d-vector Z satisfies EZ = 0 and EZZ′ = Id .

(i) If R is a fixed d × d orthogonal matrix and Z satisfies any of the bounds (b1)(a)–(c) or
(b2) for some values of k, α, β , ε and ξ , then the random vector Z∗ = RZ satisfies the same
bound with the same constants.

(ii) If r is a scalar random variable taking values in {−1,1} that is independent of Z, and
Z satisfies any of the bounds (b1)(a)–(c) or (b2) for some values of k, α, β , ε and ξ , then the
random vector Z∗ = rZ satisfies the same bound with the same constants.

Examples 3.1 and 3.2 can be combined to produce many multivariate distributions with de-
pendent components that still satisfy the assumptions of Theorem 2.1. For instance, if Z has
independent non-Gaussian components with moment and density bounds as in Example 3.1 and
R is orthogonal with no zero entry, then, by the Darmois–Skitovich theorem, Z∗ = RZ cannot
have independent components. Alternatively, if Z = (z1, . . . , zd)′ is as in Example 3.1 and such
that, say, the first two components have non-symmetric distributions, then the first two com-
ponents of Z∗ = rZ = (z∗

1, . . . , z
∗
d)′, for some non-degenerate random variable r with values

in {−1,1}, may be dependent. Indeed, for example, take z1 ∼ z2 ∼ Exp(1) − 1 and note that
P(z∗

2 < −1|z∗
1 > 1) = 0 �= P(z∗

2 < −1).
As our last example we discuss a specific case of a spherical distribution. Recall that every

spherically symmetric distribution with independent components must be Gaussian. So every
spherical non-Gaussian distribution constitutes an example of a multivariate distribution with
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dependent components. Also, if Z is spherical, then E[Z‖B ′Z] = BB ′Z, almost surely, for every
B ∈ Vd,p . Hence, the following example is only of interest in connection with Theorem 2.1(ii)
on the conditional second moment of Z, since the conclusion of Theorem 2.1(i) is trivially true
in this case.

Example 3.3. If Z is uniformly distributed on the d-ball of radius
√

d + 2, then EZ = 0 and
EZZ′ = Id . Moreover, for k ∈ {2,4}, at least for all sufficiently large d , Z satisfies (b1) and (b2)
with constants ε = ξ = 1/2, D = 1, and constants α and β that depend only on k.

Finally, it is worth mentioning that in the case of spherically symmetric Z the structure of the
set G from Theorem 2.1 simplifies dramatically. Indeed, from Theorem 2.1(iii) we see that if Z

is spherical, then G is both left and right-invariant under the action of the appropriate orthogonal
groups and thus is either empty or equal to the whole Stiefel manifold Vd,p .

3.2. Improved bounds

At the current state of research, we can not say if the bounds provided by Theorem 2.1 are
tight, or at least if they are of the optimal rate in d , in the sense that this rate is achieved for
some multivariate distribution satisfying conditions (b1) and (b2). However, there are certain
distributions for which the bounds of the theorem can be improved substantially.2

First, consider the bounds (2.1) and (2.3), which are only of logarithmic order in d . As
mentioned in Section 2, they can be improved considerably if one imposes an appropriate
condition on Z. Here, we only consider (2.1) as an example. This bound is derived in the
proof of Lemma B.2(i) by the following simple argument involving the cut-off point Md =√

3ξ1(1 − τ)(logd)/γ1. For t > 0,

P
(∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥ > t
)

≤ P
(∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥ > t,
∥∥B ′Z

∥∥ ≤ Md

) + P
(∥∥B ′Z

∥∥ > Md

)
(3.1)

≤ 1

t

∫
‖x‖≤Md

∥∥E[
Z‖B ′Z = x

] − Bx
∥∥dPB ′Z(x) + p/M2

d .

In the proof of Theorem 2.1(i) we choose G ⊆ Vd,p such that for B ∈ G the bound in (3.1) turns
into (2.1), while, at the same time, νd,p(Gc) is bounded as in (2.2). Of course, using Markov’s
inequality to bound P(‖B ′Z‖ > Md) in the preceding display is far from optimal if we have more
information on the tails of Z.

Suppose now that the random vector Z, in addition to the assumptions of Theorem 2.1(i), also
satisfies the sub-Gaussian tail condition

E exp
(
α′Z

) ≤ exp
(‖α‖2σ 2/2

)
, (3.2)

2Moreover, for each specific distribution, there are typically subsets of the set G from the theorem, for which the prob-
abilities in (1.1) and (1.2) are substantially smaller than their respective upper bounds (2.1) and (2.3). For instance, if Z

has independent components and the columns of B are elements of the standard basis in Rd , then both probabilities in
(1.1) and (1.2) are equal to zero, for all t > 0.
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for every α ∈Rd and some constant σ > 0.3 Under this condition, the tail inequality for quadratic
forms by [7] applies and yields

P
(∥∥B ′Z

∥∥2
> σ 2(p + 2

√
ps + 2s2)) ≤ e−s2

,

for all s > 0. Suppose that p < M2
d /(8σ 2). Since this restriction also entails that p <

M2
d /σ 2, the equation σ 2(p + 2

√
ps + 2s2) = M2

d has a real positive solution s0 = −√
p/2 +√

M2
d /(2σ 2) − p/4. Thus, after expanding the square and rearranging terms, we obtain

s2
0 = M2

d

2σ 2
−

√
p

(
M2

d

2σ 2
− p

4

)
≥ M2

d

4σ 2
= (logd)

3

4

ξ1(1 − τ)

σ 2γ1
,

where we have used our restriction on p again. Hence,

P
(∥∥B ′Z

∥∥2
> M2

d

) ≤ e−s2
0 ≤ d

− 3
4

ξ1(1−τ )

σ2γ1 ,

and we have managed to replace the term in (2.1) that is only of logarithmic order in d by
something that is decreasing polynomially in d . However, since the squared cut-off point M2

d

is only of logarithmic order in d , the condition that p < M2
d /(8σ 2) still requires p/ logd to be

small. At the moment, we do not see a way how to increase the cut-off point to polynomial order
in d without simultaneously ruining the bound in (2.2).

Concerning the bounds (2.2) and (2.4), we believe that polynomial rates in d of arbitrarily
high order can be achieved under more restrictive assumptions than those maintained here and
upon using a more elaborate method of proof. First results in that direction, regarding only the
conditional expectation, are in preparation, cf. [12].

3.3. The case of a general covariance matrix

The proof of Theorem 2.1 crucially relies on the assumptions that EZ = 0 and EZZ′ = Id .
However, Theorem 2.1, as it stands, can already be used to generalize substantially beyond the
mean zero and unit covariance case. In particular, we can provide a large class of positive definite
covariance matrices such that for each element � of that class the conclusions of Theorem 2.1
remain valid, provided, of course, that all the relevant quantities are modified to reflect the general
covariance structure �. The key to this extension is the following observation.

If Y is Gaussian with mean μ ∈ Rd and positive definite covariance matrix �, and A ∈ Vd,p ,
then E[Y‖A′Y ] = μ + �1/2P�1/2A�−1/2(Y − μ) and E[(Y − μ)(Y − μ)′‖A′Y ] = �1/2[Id −
P�1/2A + P�1/2A�−1/2(Y − μ)(Y − μ)′�−1/2P�1/2A]�1/2, where P... is the projection matrix
corresponding to the column span of the matrix in the subscript. These are our target quanti-
ties. Now assume that Y is not necessarily Gaussian but satisfies Y = μ + �1/2Z, with Z as in

3This is satisfied, for instance, if Z has independent components which all satisfy the one dimensional analogue of (3.2)
with the same value of σ .
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Theorem 2.1. One easily verifies that

E
[
Y‖A′Y

] − (
μ + �1/2P�1/2A�−1/2(Y − μ)

) = �1/2(
E

[
Z‖B ′Z

] − BB ′Z
)
,

and

E
[
(Y − μ)(Y − μ)′‖A′Y

]
− �1/2(Id − P�1/2A + P�1/2A�−1/2(Y − μ)(Y − μ)′�−1/2P�1/2A

)
�1/2

= �1/2(
E

[
ZZ′‖B ′Z

] − (
Id − BB ′ + BB ′ZZ′BB ′))�1/2,

where B = �1/2A(A′�A)−1/2 ∈ Vd,p . Ideally, the norm of these quantities should become small
if d is large. Ignoring the additional scaling by the matrix �1/2 of these error terms,4 there
remains the question of whether the theorem also applies to

P
(∥∥E[

Z‖B ′Z
] − BB ′Z

∥∥ > t
)

(3.3)

and

P
(∥∥E[

ZZ′‖B ′Z
] − (

Id − BB ′ + BB ′ZZ′BB ′)∥∥ > t
)
, (3.4)

instead of (1.1) and (1.2), i.e., if B = B(�,A) ∈ G. This raises two questions: For given �,
how large is the collection of “good” matrices A, that is, how large is the set of A for which
B(�,A) ∈ G? And: How large is the family of matrices � for which the collection of “good”
matrices A is large? The latter question is answered by the next result.

Proposition 3.4. If Z satisfies the assumptions of Theorem 2.1(i) (or Theorem 2.1(ii)) and G ⊆
Vd,p is the corresponding subset of the Stiefel manifold, then, for each diagonal positive definite
matrix �, there exists a collection U(�) = U(G,�) ⊆ Od of orthogonal matrices, such that the
sets

S := S(G) := {
U�U ′ : � = diag(λi) > 0,U ∈U(G,�)

}
and

J(�) := J(�,G) := {
A ∈ Vd,p : �1/2A

(
A′�A

)−1/2 ∈ G
}
,

have the following properties:

sup
�:�=diag(λi )>0

νd,d

(
U

c(�)
)

and sup
�∈S

νd,p

(
J
c(�)

)
are bounded by the square root of the right-hand-side of (2.2) (resp. (2.4)). By definition, if � is
any positive definite covariance matrix and A ∈ J(�), then (3.3) (resp. (3.4)) is bounded by (2.1)
(resp. (2.3)) for every t > 0.

4Whether the scaling by �1/2 matters depends on the specific context of application for these results. Also, the prob-
lem can always be circumvented by imposing a boundedness assumption on ‖�‖. However, in the context of [17], for
example, no such bound is required.
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To understand the message of Proposition 3.4, suppose for now that the assumptions of The-
orem 2.1(i) are satisfied. Then the set J(�) is constructed such that the following holds: If �

is any positive definite covariance matrix and A is taken from the collection J(�), then, for
B = �1/2A(A′�A)−1/2, the expression in (3.3) is bounded by (2.1). In other words, J(�) is a
collection of “good” matrices A as discussed just before the proposition. Now Proposition 3.4
shows that J(�) is large provided that � ∈ S, and also that the set S itself is large. Similar
considerations apply, mutatis mutandis, to the conditional variance under the assumptions of
Theorem 2.1(ii). In short, for a large class of d-dimensional distributions Z (cf. conditions (b1)
and (b2)), for a large set of covariance matrices � (given by S) and for most matrices A from the
Stiefel manifold (those contained in J(�)), the first two conditional moments of Y = μ+�1/2Z

given A′Y are close to what they would be in the Gaussian case, all provided that p/ logd is
small.

4. Proof of Theorem 2.1

The rest of the paper and the on-line supplementary material comprise the proof of Theorem 2.1.
The basic strategy of the proof is non-standard and is described in this section. To implement this
strategy, we need to deal with several intricate technical challenges. But those can be handled
by standard methods from multivariate analysis and probability theory. To keep the main paper
short, such technical details are relegated to the on-line supplementary material. Our arguments
have the same basic structure as those used in [9]. To prove Theorem 2.1, however, the arguments
from [9] require substantial extensions and modifications, because many of the arguments used in
that reference are of an asymptotic nature and do not provide explicit error bounds, and because
all of these arguments rely heavily on the assumption that p is fixed and equal to 1.

4.1. Two crucial bounds

Throughout, fix d ∈ N and let Z be as in Theorem 2.1, i.e., a random d-vector that has a Lebesgue
density and that is standardized so that EZ = 0 and EZZ′ = Id . [The particular assumptions of
part (i) and (ii) of Theorem 2.1 will be imposed as needed later.] We will study the following
quantities: For a positive integer p < d , for x ∈Rp , and for B ∈ Vd,p , set μx|B = E[Z‖B ′Z = x],
�x|B = E[ZZ′‖B ′Z = x] − (Id + B(xx′ − Ip)B ′), and h(x|B) = E[f (Wx|B)

φ(Wx|B)
], where f = fZ is

a Lebesgue density of Z, Wx|B = Bx + (Id − BB ′)V , and φ denotes a Lebesgue density of
V ∼ N(0, Id). Note that these quantities, if considered as functions with domain Rp ×Vd,p , can
be chosen to be measurable; cf. Lemma B.1 in the on-line supplement. Finally, write SM,p for
the closed ball of radius M in Rp , i.e., SM,p = {x ∈Rp : ‖x‖ ≤ M}.

We now introduce two bounds which will play an essential role in the proof of Theorem 2.1.
In each bound, the quantity of interest, which will be introduced shortly, will be bounded by an
expression of the form

p2k+1+εegM2
(2D

√
πe)pkd−min{ξ,ε/2+1/4,1/2}κ (4.1)
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for some even integer k, where the precise value of the constants in the bound will depend on the
context, i.e., these constants will be chosen as needed later.

The first crucial bound implies the first part of Theorem 2.1: Under the assumptions of the
Theorem 2.1(i), we will show that

sup
x∈SM,p

∫ [‖μx|B‖2 − ‖x‖2]h(x|B)2 dνd,p(B) (4.2)

is bounded by (4.1) for k = 2, for every M > 1 and every p ∈ N such that d > max{4(k + p +
1)M4,2k + p(2k + 2)2k+3,p2}, where κ = κ1 ≥ 1 is a constant that depends only on α and β ,
and where g = g1 is a global constant. The remaining constants occurring here, i.e., ε, α, β ,
ξ , and D, are those that appear in the bounds (b1)(a)–(b) and (b2) imposed by Theorem 2.1(i).
Once that statement has been derived, the proof of Theorem 2.1(i) is easily completed by standard
arguments (that are detailed in Lemma B.2(i)).

The second crucial bound similarly delivers the second part of Theorem 2.1: Under the as-
sumptions of Theorem 2.1(ii), we will show that (4.2) and

sup
x∈SM,p

∫
trace�k

x|Bh(x|B)k dνd,p(B) (4.3)

are both bounded by (4.1) for k = 4, for every M > 1 and every p ∈ N such that d > max{4(k +
p + 1)M4,2k + p(2k + 2)2k+3,p2}, where κ = κ2 ≥ 1 depends only on α and β , and where
g = g2 is a global constant. Again, the remaining constants ε, α, β , ξ , and D are those that
appear in the bounds (b1) and (b2) imposed by Theorem 2.1(ii). From this statement, standard
arguments complete the proof of Theorem 2.1(ii); cf. Lemma B.2(ii).

It turns out that in order to derive the upper bounds for (4.2) and (4.3), it will be instrumental
to show that

sup
x∈SM,p

∫ [
h(x|B) − 1

]2
dνd,p(B) (4.4)

is finite. In particular, we will need to establish finiteness of (4.4) for every M and p as in
(4.2) to derive the desired bound on (4.2), and for every M and p as in (4.3) for the bound on
(4.3). We will in fact show more than that, namely that (4.4) is also bounded by (4.1), under the
assumptions of Theorem 2.1(i) and for constants as in (4.2), and also under the assumptions of
Theorem 2.1(ii) and for constants as in (4.3).

We pause here for a moment to discuss a weaker version of Theorem 2.1 which also allows
us to better appreciate the importance of (4.4) (the exact role of (4.4) in the main argument will
become apparent later, after Proposition 4.1): Assume in this paragraph that (4.2), (4.3), and (4.4)
are all bounded by (4.1) with k = 4, for each M > 1, and for each sufficiently large d . [The other
constants in the bound, i.e., p, ε, g, D, ξ and κ , are assumed to be fixed, independent of d here.]
Under this assumption, we immediately obtain the following weaker version of Corollary 2.4:
For each x ∈Rp , we have

∥∥E[
Z‖B′Z = x

] − Bx
∥∥2 p−→ 0,
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∥∥E[
ZZ′‖B′Z = x

] − (
Id + B

(
xx′ − Ip

)
B′)∥∥ p−→ 0

as d → ∞, if B is a random matrix that is uniformly distributed on Vd,p . After noting that
‖E[Z‖B′Z = x] − Bx‖2 can also be written as ‖E[Z‖B′Z = x]‖2 − ‖x‖2, this is an easy
consequence of Markov’s inequality and Slutzky’s lemma.5 [Choose M ≥ ‖x‖ and observe
that the upper bound (4.1) converges to zero as d → ∞, so that also the three quantities in
(4.2), (4.3), and (4.4) converge to zero. Now convergence of (4.4) to zero entails that h(x|B)

converges to one in squared mean. Convergence of (4.2) to zero implies that [‖E[Z‖B′Z =
x]‖2 − ‖x‖2]h(x|B)2 converges to zero in expectation. Similarly, convergence of (4.3) to zero
implies that trace�4

x|Bh(x|B)4 converges to zero in expectation. Because the involved random
variables are all non-negative, the first relation in the preceding display follows from Markov’s
inequality and Slutzky’s lemma. The second relation follows in a similar fashion upon observing
that the symmetry of �x|B entails that ‖�x|B‖4 is bounded from above by trace�4

x|B.]
In this subsection, we have seen that to prove Theorem 2.1(i), it suffices to show, under the

assumptions maintained there, that both (4.2) and (4.4) are bounded by (4.1) for constants as
in (4.2). And, similarly, to prove Theorem 2.1(ii), it remains to show, under the assumptions
maintained there, that (4.2), (4.3) and (4.4) are all bounded by (4.1) for constants as in (4.3).

4.2. Changing the reference measure

Throughout the following, set

Wj = Bx + (
Id − BB′)Vj , (4.5)

for j = 1, . . . , k, where B, V1, . . . , Vk are independent such that B is a random d ×p matrix with
distribution νd,p and such that each of the Vi is distributed as N(0, Id). We call W1, . . . ,Wk the
“rotational clones”, in analogy to the name “rotational twins” that the authors of [6] use for the
pair W1,W2 in case p = 1. With this, we may rewrite the integral in (4.4) as

∫ (
E

[
f (Wx|B)

φ(Wx|B)

])2

− 2E

[
f (Wx|B)

φ(Wx|B)

]
+ 1dνd,p(B)

=
∫

E

[
f (Bx + (Id − BB ′)V1)

φ(Bx + (Id − BB ′)V1)

]
E

[
f (Bx + (Id − BB ′)V2)

φ(Bx + (Id − BB ′)V2)

]
dνd,p(B)

− 2
∫

E

[
f (Bx + (Id − BB ′)V1)

φ(Bx + (Id − BB ′)V1)

]
dνd,p(B) + 1

= E

[
f (W1)

φ(W1)

f (W2)

φ(W2)
− 1

]
− 2E

[
f (W1)

φ(W1)
− 1

]
, (4.6)

provided that the expected values in (4.6) are all finite. And, clearly, if both expected values in
(4.6) are bounded by (4.1) in absolute value, then (4.6) is bounded by three times the expression

5A proof of the first statement in the preceding display was already sketched in [6] as an immediate generalization of the
case where p = 1 proved therein. See also [9] for further discussion of that result.
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in (4.1). To establish the desired bounds on (4.2) and (4.3) it will be convenient to also express
the integrals in (4.2) and (4.3) in terms of the Wi . This can be accomplished by virtue of the
following proposition.

Proposition 4.1. Fix d ≥ p ≥ 1, and consider a random d-vector Z with Lebesgue density f .
Let V ∼ N(0, Id), and write φ(·) for a Lebesgue density of V . Moreover, for a fixed d ×p-matrix
B ∈ Vd,p and for any x ∈Rp , set Wx|B = Bx+(Id −BB ′)V . Then the function h(·|B) : Rp → R̄

defined by

h(x|B) = E

[
f (Wx|B)

φ(Wx|B)

]

for x ∈ Rp is a density of B ′Z with respect to the p-variate standard Gaussian measure (i.e.,
h(x|B)φp(x) is a Lebesgue density of B ′Z if φp denotes a Np(0, Ip)-density). Moreover, if
� : Rd → R is such that �(Z) is integrable, then a conditional expectation E[�(Z)‖B ′Z = x]
of �(Z) given B ′Z = x satisfies

E
[
�(Z)‖B ′Z = x

]
h(x|B) = E

[
�

(
Wx|B)f (Wx|B)

φ(Wx|B)

]

whenever x ∈ Rp is such that h(x|B) < ∞.

Note that this proposition applies under the assumptions of both parts of Theorem 2.1. Assume
therefore that Proposition 4.1 is applicable throughout the rest of this subsection. The integral in
(4.2) can then be re-written as∫ [‖μx|B‖2 − ‖x‖2]h(x|B)2 dνd,p(B)

=
∫ ∥∥μx|Bh(x|B)

∥∥2
dνd,p(B) − ‖x‖2

∫
h(x|B)2 dνd,p(B)

=
∫

E

[
Wx|B f (Wx|B)

φ(Wx|B)

]′
E

[
Wx|B f (Wx|B)

φ(Wx|B)

]
dνd,p(B)

− ‖x‖2
E

[
f (W1)

φ(W1)

f (W2)

φ(W2)

]

= E

[(
W ′

1W2 − ‖x‖2)f (W1)

φ(W1)

f (W2)

φ(W2)

]
, (4.7)

provided that the expected values in (4.6) and (4.7) are all finite. [Indeed, finiteness of the ex-
pected values in (4.6) entails that

∫ [h(x|B) − 1]2 dνd,p(B) is finite, so that νd,p{B : h(x|B) =
∞} = 0, whence Proposition 4.1 can be used to obtain the second equality in the preceding dis-
play. The first and the third equality follow from finiteness of the expected values in (4.6) and
(4.7).]

To express the integral in (4.3) in a similar way, define �x|B(z) : Rp ×Vd,p ×Rd →Rd×d by
�x|B(z) = zz′ − (Id +B(xx′ − Ip)B ′), and use Proposition 4.1 component-wise with �i,j (Z) =
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[�x|B(Z)]i,j for all i, j = 1, . . . , d to obtain

∫
trace�k

x|Bh(x|B)k dνd,p(B)

=
∫

trace
{(
E

[
�x|B(Z)‖B ′Z = x

]
h(x|B)

)k}
dνd,p(B)

=
∫

trace

{(
E

[
�x|B

(
Wx|B)f (Wx|B)

φ(Wx|B)

])k}
dνd,p(B)

= E

[
trace�x|B(W1) · · ·�x|B(Wk)

f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]
, (4.8)

provided that the expected values in (4.6) and (4.8) are all finite. Lemma C.1 describes how
the expression in (4.8) can be written as a weighted sum of expressions that, similarly to (4.7),
involve only inner products of the Wi and a product of density ratios. In particular, we find that
(4.8) can be written as a weighted sum of terms of the form

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
W ′

1W2 · · ·WjW
′
jW1 − d + p − ‖x‖2j

)f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]
, and

(4.9)

E

[(
m∏

i=1

W ′
ji−1+1Wji−1+2W

′
ji−1+2 · · ·W ′

ji−1Wji
− ‖x‖2(jm−m)

)
f (W1)

φ(W1)
· · · f (Wk)

φ(Wk)

]

for m ≥ 1 and indices j0, . . . , jm satisfying j0 = 0, jm < k, and ji−1 + 1 < ji whenever 1 ≤ i ≤
m, provided that the expected values in (4.9) are all finite. [Note that these requirements entail
that m ≤ k/2, and that there are no more than

(
k
m

)
choices for the indices j0, . . . , jm in the second

expected value in (4.9).] Lemma C.1 also shows that the weights in this expansion of (4.8) only
depend on k and on x, and are polynomials in ‖x‖2. Note that hence all the weights are bounded,
in absolute value and uniformly in x ∈ SM,p , by ec(k)M2

for some constant c(k) that depends
only on k. In particular, if the expected values in (4.9) are all bounded by (4.1) in absolute value,
then the same is true for (4.8) or, equivalently, (4.3) upon replacing the constants g and κ in (4.1)
by, say, g + c(k) and

(
1 + (k/2)

(
k

k/2

))
κ , respectively.

In this subsection, we have seen how the integrals in (4.2), (4.3) and (4.4) can be re-written as
weighted sums of expected values involving the rotational clones, provided these expected values
are all finite. To prove Theorem 2.1(i), it thus remains to show, under the maintained assumptions,
that the expected values in (4.6) and (4.7) are all bounded by (4.1) in absolute value, uniformly
in x ∈ SM,p , and for constants as in (4.2). And Theorem 2.1(ii) follows if, under the assumptions
of that theorem, the expected values in (4.6) and (4.7) as well as all the expressions in (4.9) are
bounded by (4.1) in absolute value, uniformly in x ∈ SM,p , and for constants as in (4.3).
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4.3. The joint density of the “rotational clones”

Proposition 4.2. For integers 1 ≤ p < d and 1 ≤ k ≤ d − p, let x ∈ Rp , and let W1, . . . ,Wk

be as in (4.5). Then W1, . . . ,Wk have a joint density ϕx(w1, . . . ,wk) with respect to Lebesgue
measure which satisfies

ϕx(w1, . . . ,wk)

φ(w1) · · ·φ(wk)

=
(

d

2

)− pk
2

k∏
i=1

�((d − i + 1)/2)

�((d − p − i + 1)/2)
det(Sk)

− p
2

(
1 − ‖x‖2

d
ι′S−1

k ι

) d−p−k−1
2

e
k
2 ‖x‖2

if Sk is invertible with ‖x‖2ι′S−1
k ι < d , and ϕx(w1, . . . ,wk) = 0 otherwise, where Sk =

(w′
iwj /d)ki,j=1 denotes the k × k matrix of scaled inner products of the wi , and ι = (1, . . . ,1)′

denotes an appropriate vector of ones.
If, in addition, k < d − p − 1, then the normalizing constant in the preceding display, that is,

the quantity η(d,p, k) = (d/2)−kp/2 ∏k
i=1

�((d−i+1)/2)
�((d−p−i+1)/2)

satisfies

0 < η(d,p, k) ≤ exp

[
p2

d

(
1 − p + k − 1

d

)−1
k2

2

]
.

Note that Proposition 4.2 applies whenever p, d , and k are as in (4.2) or (4.3). For p, d , and k

as in Proposition 4.2, we can re-express the expression in (4.6) as

E

[
f (W1)

φ(W1)

f (W2)

φ(W2)
− 1

]
− 2E

[
f (W1)

φ(W1)
− 1

]

=
∫
Rd×Rd

(
f (w1)

φ(w1)

f (w2)

φ(w2)
− 1

)
ϕx(w1,w2) dw1 dw2

(4.10)
− 2

∫
Rd

(
f (w1)

φ(w1)
− 1

)
ϕx(w1) dw1

= E

[
ϕx(Z1,Z2)

φ(Z1)φ(Z2)
− 1

]
− 2E

[
ϕx(Z1)

φ(Z1)
− 1

]
,

we can rewrite (4.7) as

E

[(
Z′

1Z2 − ‖x‖2) ϕx(Z1,Z2)

φ(Z1)φ(Z2)

]
, (4.11)

and the expressions in (4.9) can be written as

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − ‖x‖2j

) ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]
,

(4.12)

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji
− ‖x‖2(jm−m)

)
ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]
,
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for m ≥ 1 and indices j0, . . . , jm satisfying j0 = 0, jm < k, and ji−1 + 1 < ji whenever
1 ≤ i ≤ m.

In this subsection, we have seen how the integrals in (4.2), (4.3) and (4.4) can be re-written as
weighted sums of expected values involving i.i.d. copies of Z and the density of the rotational
clones, provided these expected values are all finite. Theorem 2.1(i) now follows if we can show
that the expected values in (4.10) and (4.11) are all bounded by (4.1) in absolute value, uniformly
in x ∈ SM,p , and for constants as in (4.2), under the assumptions of that theorem. Similarly,
Theorem 2.1(ii) follows, provided the expected values in (4.10) and (4.11) as well as all the
expressions in (4.12) are bounded by (4.1) in absolute value, uniformly in x ∈ SM,p , and for
constants as in (4.3), under the assumptions of that theorem.

4.4. Two sufficient conditions

For an even integer k, consider the quantities

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji

)
ϕx(Z1, . . . ,Zl)

φ(Z1) · · ·φ(Zl)

]
− ‖x‖2(jm−m) (4.13)

for l = 1, . . . , k, for each m ≥ 0, and for each set of indices j0, . . . , jm that satisfies j0 = 0, jm ≤ l

and ji−1 + 1 < ji whenever 1 ≤ i ≤ m. And, again for even k, consider

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − 1

)
(4.14)

× ϕx(Z1, . . .Zk)

φ(Z1) · · ·φ(Zk)

]
− (

1 − ‖x‖2)k
.

If the expressions of the form (4.13) are all bounded by (4.1), in absolute value and with
constants as in (4.2), then both the expected values in (4.10) and (4.11) are also bounded by
(4.1), again in absolute value and for constants as in (4.2). Indeed, the two expected values in
(4.10) are special cases of (4.13), namely with m = 0 and l = 1, and with m = 0 and l = 2,
respectively. Similarly, one sees that (4.11) equals

E

[(
Z′

1Z2
) ϕx(Z1,Z2)

φ(Z1)φ(Z2)
− ‖x‖2

]
− ‖x‖2

E

[
ϕx(Z1,Z2)

φ(Z1)φ(Z2)
− 1

]
.

Note that the two expected values in the preceding display are special cases of (4.13), namely
with m = 1, l = 2 and with m = 0, l = 2. If these special cases of (4.13) are both bounded by
(4.1) in absolute value, uniformly in x ∈ SM,p , and for constants as in (4.2), then the expression
in the preceding display is similarly bounded by the product of (4.1) and 1 + M2. It is now easy
to see that the resulting upper bound on the expression in the preceding display, and hence also
on (4.11), is itself upper bounded by an expression of the form (4.1) for constants as in (4.2).

Similarly, if the expressions of the form (4.13) and also (4.14) are bounded by (4.1), in absolute
value and with constants as in (4.3), then the expected values in (4.10) and (4.11) as well as all
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the expressions in (4.12) are also bounded by (4.1), again in absolute value and for constants as
in (4.3). Indeed, (4.10) can be bounded as claimed by arguing as in the preceding paragraph. For
(4.12), we rewrite the first expression in that display as

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − ‖x‖2j

) ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]

=
k∑

j=1

(−1)k−j

(
k

j

)
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − 1

) ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

]

+E

[
ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

] k∑
j=1

(−1)k−j

(
k

j

)(
1 − ‖x‖2j

)

= (4.14) + (
1 − ‖x‖2)k −E

[
ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)

](
1 − ‖x‖2)k

= (4.14) − (
1 − ‖x‖2)k

E

[
ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)
− 1

]
,

where the second equality is obtained from the binomial formula upon recalling that k is even.
From this, the first expression in (4.12) can be bounded by an expression of the form (4.1),
namely by first bounding both (4.13) and (4.14) with m = 0 and l = k by (4.1), by using the
fact that (1 − ‖x‖2)k ≤ 2kM2k for x ∈ SM,p , and by adjusting the constants κ and g in (4.1)
accordingly. The second expression in (4.12) can be bounded in a similar fashion upon using
appropriate bounds on (4.13).

In this subsection, we have seen how bounds on the expressions of the form (4.13) and on
(4.14) can be used to prove both parts of Theorem 2.1. In particular, Theorem 2.1(i) follows
if, under the assumptions of that theorem, the expressions of the form (4.13) are all bounded by
(4.1), in absolute value, uniformly in x ∈ SM,p , and for constants as in (4.2). And Theorem 2.1(ii)
follows if the expressions of the form (4.13) and also (4.14) are all bounded by (4.1), in abso-
lute value, uniformly in x ∈ SM,p , and for constants as in (4.3), under the assumptions of that
theorem.

4.5. Approximating the density ratio

Proposition 4.3. Fix M > 1, positive integers k, d , and p, such that d > p2 and d > 4(k +
p + 1)M4 and let x ∈ SM,p . For a collection of d-vectors w1, . . . ,wk , define the k × k-matrix

Sk = (w′
iwj /d)ki,j=1. Then the density ratio ϕx(w1,...,wk)

φ(w1)···φ(wk)
can be expanded as

ϕx(w1, . . . ,wk)

φ(w1) · · ·φ(wk)
= ψx(Sk − Ik) + �,

where the quantities on the right hand side have the following properties:
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ψx is a polynomial of degree k in the elements of Sk − Ik whose coefficients are bounded by
pkM2(k+2)Cψ(k), where Cψ(k) depends only on k. In particular, we may write

ψx(Sk − Ik) =
∑

H∈Mk

C(H)H(Sk − Ik),

where Mk is the set of all monomials in the entries of a symmetric k×k-matrix (i.e., in k(k+1)/2
variables) up to degree k and C(H) ∈ R is the coefficient in ψx corresponding to the monomial
H , which satisfies |C(H)| ≤ pkM2(k+2)Cψ(k). In addition, the coefficients C(H) are invariant
under permutations in the following sense: Define the function g by g(w1, . . . ,wk) = Sk − Ik . If
H,G ∈ Mk are such that H ◦ g(w1, . . . ,wk) = G ◦ g(wπ(1), . . . ,wπ(k)), for some permutation
π of k elements and every choice of w1, . . . ,wk ∈Rd , then C(H) = C(G).

Moreover, there exists a constant ξ(k) > 2k that depends only on the value of k, such that

whenever ‖Sk − Ik‖ < 1/(pξ(k)), the remainder term � satisfies |�| ≤ pk+1M2(k+2)e
k
2 M2‖Sk −

Ik‖k+1C�(k), where C�(k) is a constant that depends only on k.

Note that Proposition 4.3 applies whenever M , k, d , and p are either as in (4.2) or as in (4.3).
The proposition suggests to replace the density ratio ϕx(w1,...,wk)

φ(w1)···φ(wk)
by the polynomial ψx(Sk − Ik).

For a fixed even integer k, we therefore consider, as approximations to the expressions in (4.13),
the quantities

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji

)
ψx(Sl − Il)

]
− ‖x‖2(jm−m) (4.15)

for l = 1, . . . , k, for each m ≥ 0, and for each set of indices j0, . . . , jm that satisfies j0 = 0, jm ≤ l

and ji−1 + 1 < ji whenever 1 ≤ i ≤ m. And as approximation to (4.14), we consider

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − 1

)
ψx(Sk − Ik)

] − (
1 − ‖x‖2)k

. (4.16)

In order for these approximations to be useful we have to make sure that the difference between
(4.14) and (4.16) as well as the difference between (4.13) and (4.15) can be controlled. The
following proposition provides us with the appropriate tool.

Proposition 4.4. Fix positive integers d and k. Moreover, let M > 1 and p ∈ N be such that
d > max{4(k + p + 1)M4,2k + p(2k + 2)2k+3,p2}. Let Z be a random d-vector such that
EZ = 0 and EZZ′ = Id , and such that bounds (b1)(a) and (b2) obtain with k as chosen here.
Write Z1, . . . ,Zk for i.i.d. copies of Z. Finally, fix l ∈ {1, . . . , k}, let Sl = (Z′

iZj /d)li,j=1, and let
H(Sl − Il) be a (fixed) monomial in the elements of Sl − Il whose degree, denoted by deg(H),
satisfies 0 ≤ deg(H) ≤ l. Then

sup
x∈SM,p

E

[
d

l+deg(H)
2

∣∣H(Sl − Il)
∣∣∣∣∣∣ ϕx(Z1, . . . ,Zl)

φ(Z1) · · ·φ(Zl)
− ψx(Sl − Il)

∣∣∣∣
]
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is bounded by

p2k+1+εM2(k+2)e
k
2 M2

(2D
√

πe)pkαd−ε/2−1/4

times a constant that depends only on k. Here ε ∈ [0,1/2] and α ≥ 1 are the constants
from (b1)(a) and D is the constant from (b2).

This proposition applies under the assumptions of Theorem 2.1(i) and for constants as in (4.2),
and also under the assumptions of Theorem 2.1(ii) and for constants as in (4.3). Under the as-
sumptions of Proposition 4.4, consider first the difference of (4.14) and (4.16). This difference is
a sum of k terms (with k an even integer), where the modulus of the j th term is bounded by(

k

j

)
E

[∣∣Z′
1Z2 · · ·ZjZ

′
jZ1 − d + p − 1

∣∣∣∣∣∣ ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)
− ψx(Sk − Ik)

∣∣∣∣
]

≤
(

k

j

)
E

[
d

k+j
2

∣∣Hj(Sk − Ik)
∣∣∣∣∣∣ ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)
− ψx(Sk − Ik)

∣∣∣∣
]

+
(

k

j

)
E

[
d

k+0
2

∣∣H0(Sk − Ik)
∣∣∣∣∣∣ ϕx(Z1, . . . ,Zk)

φ(Z1) · · ·φ(Zk)
− ψx(Sk − Ik)

∣∣∣∣
]
,

with H0(Sk − Ik) = 1, H1(Sk − Ik) = Z′
1Z1/d − 1 and, for j ≥ 2, Hj(Sk − Ik) = d−jZ′

1Z2 · · ·
ZjZ

′
jZ1, with deg(Hj ) = j for j = 0,1, . . . , k, and where we have used |p−1| ≤ |−d+p−1| ≤

dk/2. Thus Proposition 4.4 yields an upper bound for the supremum over SM,p of the absolute
value of this difference. Taken together, the difference of (4.14) and (4.16) can be bounded, in
absolute value and uniformly over x ∈ SM,p , by the upper bound from Proposition 4.4 multiplied
by 2

∑k
j=1

(
k
j

) = 2(2k − 1) (which is a constant that depends only on k). In the same way, one
sees that also the absolute difference between (4.13) and (4.15) can be bounded, uniformly over
x ∈ SM,p , by the quantity given by Proposition 4.4. Note that the bound in Proposition 4.4 is
itself upper bounded by (4.1), for example, by choosing κ = κ(k,α) and g = k/2 + 2(k + 2).

The arguments in this subsection entail that it suffices to bound the approximating quantities
(4.15) and (4.16): Theorem 2.1(i) follows if, under the assumptions of that theorem, the expres-
sions of the form (4.15) are all bounded by (4.1), in absolute value, uniformly over x ∈ SM,p ,
and for constants as in (4.2). Similarly, Theorem 2.1(ii) follows if, under the assumptions of that
theorem, the expressions of the form (4.15) and also (4.16) are all bounded by (4.1), in absolute
value, uniformly over x ∈ SM,p , and for constants as in (4.3).

4.6. Comparing the approximating quantities with Gaussian expressions

We now compare (4.15) and (4.16) with the analogous expressions where the Z1, . . . ,Zk

are replaced by i.i.d. standard normal d-vectors V1, . . . , Vk (and the Gram matrices Sl =
(Z′

iZj /d)li,j=1 for l = 1, . . . , k are replaced by the corresponding Gram matrices of the Vi , i.e.,

by S�
l = (V ′

i Vj /d)li,j=1). In particular, we show that (4.15), with the Zi replaced by the Vi , can
be controlled as desired, and we then show that the difference of (4.15) and of (4.15) with the Zi
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replaced by the Vi can also be controlled. This will lead to the desired bound on (4.15). A similar
strategy is also employed to bound (4.16).

The first step is to bound (4.15) and (4.16) with the Zi replaced by the Vi in both displays.
More explicitly, for an even integer k, we want to bound the quantities

E

[(
m∏

i=1

V ′
ji−1+1Vji−1+2 · · ·V ′

ji−1Vji

)
ψx

(
S�

l − Il

)] − ‖x‖2(jm−m), (4.17)

for l = 1, . . . , k, for each m ≥ 0, and for each set of indices j0, . . . , jm that satisfies j0 = 0, jm ≤ l

and ji−1 + 1 < ji whenever 1 ≤ i ≤ m. And we also want to bound

k∑
j=1

(−1)k−j

(
k

j

)
E

[(
V ′

1V2 · · ·VjV
′
jV1 − d + p − 1

)
ψx

(
S�

k − Ik

)] − (
1 − ‖x‖2)k

. (4.18)

Note that these expressions can be viewed as approximations, in the sense of Proposition 4.3,
to the expressions in the two preceding displays with ψx(S

�
l − Il) and ψx(S

�
k − Ik) replaced by

ϕx(V1, . . . , Vl)/(φ(V1) · · ·φ(Vl)) and ϕx(V1, . . . , Vk)/(φ(V1) · · ·φ(Vk)) , respectively. But with
that replacement, the resulting expressions are equal to zero, as is easily verified (cf. Lemma F.1
for details). It is now elementary to verify, for a standard Gaussian d-vector V , that the bound (b1)
with V replacing Z is satisfied with ε = 1/2 (and therefore for all ε ∈ [0,1/2]), with ξ = 1/2
(and thus for all ξ ∈ (0,1/2]), and with α and β replaced by constants α� and β� that depend
only on k (see also the proof of Example A.1(i) in [10]). Clearly also the bound (b2) holds with
V replacing Z (e.g., with D = 1). Therefore, all the arguments so far concerning the d-vectors
Z1, . . . ,Zk also apply to the Gaussian d-vectors V1, . . . , Vk . In particular, we see that (4.17) and
(4.18) are bounded in absolute value by the quantity given in Proposition 4.4, and hence also by
(4.1), uniformly in x ∈ SM,p and with constants that depend only on k.

It remains to bound the difference of (4.15) and (4.17) as well as the difference of (4.16)
and (4.18). In particular, to complete the proof of Theorem 2.1(i), we need to show, under the
assumptions of that theorem, that the absolute difference of each expression of the form (4.15)
and the corresponding expression in (4.17) is bounded by (4.1), uniformly in x ∈ SM,p and
for constants as in (4.2). And to finish proving Theorem 2.1(ii), we have to show, under the
assumptions of that theorem, that the absolute difference of each expression of the form (4.15)
and the corresponding expression in (4.17) and also the absolute difference of (4.16) and (4.18)
are all bounded by (4.1), uniformly in x ∈ SM,p and for constants as in (4.3).

Proposition 4.5. Suppose the random d-vector Z satisfies the bounds (b1)(a) and (b1)(b) for
a fixed positive integer k ≤ 4. For each d ≥ 1, let Z1, . . . ,Zk be i.i.d. copies of Z, set Sk =
(Z′

iZj /d)ki,j=1, and let G and H be two (fixed) monomials in the elements of Sk − Ik of degree
g and h, respectively, where max{g,h} ≤ k. Finally, define G� and H� as G and H , but with the
Z1, . . . ,Zk replaced by i.i.d. standard Gaussian d-vectors, and consider

E
[
dg

(
G −E[G])H ] −E

[
dg

(
G� −E

[
G�

])
H�

]
. (4.19)
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(i) We then have |E[H ] −E[H�]| ≤ d−h/2(α + α�).
(ii) Assume that G is given by the monomial

m∏
i=1

(Sk − Ik)ji−1+1,ji−1+2(Sk − Ik)ji−1+2,ji−1+3 · · · (Sk − Ik)ji−1,ji
, (4.20)

for some m ≥ 0 and for indices j0, . . . , jm that satisfy j0 = 0, jm ≤ k and ji−1 +1 < ji whenever
1 ≤ i ≤ m. Then the expression in (4.19) is bounded in absolute value by d−min{ξ,1/2} max{α +
α�,β + β�}.

(iii) Assume that G is given by the monomial

(Sk − Ik)1,2(Sk − Ik)2,3 · · · (Sk − Ik)j−1,j (Sk − Ik)j,1 (4.21)

and note that the degree of G is j and satisfies 1 ≤ j ≤ k. Moreover, assume that also the bound
(b1)(c) is satisfied with k as chosen here. Then the expression in (4.19) is bounded in absolute
value by d−min{ξ,1/2}(β(α + 1)+β�(α� + 1)+β2 +β�2), unless either (a) H = (Sk − Ik)a,a for
some a satisfying 1 ≤ a ≤ j , (b) H = (Sk −Ik)a,b with 1 ≤ a < b ≤ j , or (c) H = ((Sk −Ik)a,b)

2

with 1 ≤ a < b ≤ j . In case (a), the expression in (4.19) is equal to Var[Z′
1Z1]/d − 2; in case

(b), it is equal to E[(Z′
1Z2)

3]/d ; and in case (c), it equals Var[(Z′
1Z2)

2]/d2 − 2(1 + 3/d).
Here, α, β and ξ are the constants from (b1) and α� and β� are the analogous quantities to α

and β if Z is replaced by a standard Gaussian d-vector. Note that α� and β� can be chosen such
that they depend only on the value of k.

For later use, we note that Proposition 4.5(i)–(ii) applies under the assumptions of Theo-
rem 2.1(i), and that Proposition 4.5(i)–(iii) applies under the assumptions of Theorem 2.1(ii).

Assume for the moment that Proposition 4.3 and Proposition 4.5(i)–(ii) applies, and consider
the difference between (4.15) and (4.17), for some integer k ≤ 4, and for indices l, m, j0, . . . , jm

such that 1 ≤ l ≤ k, m ≥ 0, j0 = 0, jm ≤ l and ji−1 + 1 < ji whenever 1 ≤ i ≤ m. If m = 0, the
difference of interest is simply

E
[
ψx(Sl − Il)

] −E
[
ψx

(
S�

l − Il

)]
. (4.22)

For x ∈ SM,p , recall that ψx(Sl − Il) is a weighted sum of monomials in Sk − Ik of degree up
to k, where the weights are all bounded in absolute value by pkM2(k+2)Cψ(k), where Cψ(k) is
a constant that depends only on k (use Proposition 4.3 with l replacing k, and note that l ≤ k).
In that sum, the number of summands depends only on k. Therefore, (4.22) is a weighted sum of
terms of the form E[H ] −E[H�] as in Proposition 4.5(i) and thus we see that (4.22) is bounded
by pkM2(k+2)d−1/2κ in absolute value and uniformly in x ∈ SM,p , where κ depends only on α

and k. [Note that for deg(H) = 0 the difference in question is equal to zero.] This, in turn, is
obviously bounded by the quantity in (4.1) uniformly in x ∈ SM,p , for an appropriate choice of
g, for example, g = 2(k + 2), that depends only on k and for κ = κ(k,α) depending only on k
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and α. If m > 0, the difference of interest reads

E

[(
m∏

i=1

Z′
ji−1+1Zji−1+2 · · ·Z′

ji−1Zji

)
ψx(Sl − Il)

]

−E

[(
m∏

i=1

V ′
ji−1+1Vji−1+2 · · ·V ′

ji−1Vji

)
ψx

(
S�

l − Il

)]

= E
[
ddeg(G)

(
G −E[G])ψx(Sl − Il)

] −E
[
ddeg(G�)

(
G� −E

[
G�

])
ψx

(
S�

l − Il

)]
,

where G and G� are as in Proposition 4.5(ii) and thus have mean zero. Again, if x ∈ SM,p ,
then we are dealing with a weighted sum of expressions of the form (4.19) whose weights are
all bounded in absolute value by pkM2(k+2)Cψ(k) (by Proposition 4.3). Arguing as in the case
where m = 0 and now using Proposition 4.5(ii), we see that the expression in the preceding
display is bounded by (4.1) in absolute value and uniformly in x ∈ SM,p for a constant g = g(k)

depending only on k and for κ = κ(k,α,β) depending only on k, α, and β .
Now suppose that the assumptions of Theorem 2.1(i) are satisfied. The argument in the pre-

ceding paragraph with k = 2 shows that the absolute difference between (4.15) and (4.17) is
bounded by (4.1) uniformly in x ∈ SM,p and for constants as in (4.2) (because k is fixed and
equals 2 here). This completes the proof of Theorem 2.1(i).

Finally, assume that the conditions of Theorem 2.1(ii) are met (and note that hence k = 4).
Arguing as in the second-to-last paragraph, we see that the absolute difference between (4.15)
and (4.17) is bounded by (4.1) uniformly in x ∈ SM,p and for constants as in (4.3) (again because
k is fixed here). It remains to deal with the difference of (4.16) and (4.18). It is not difficult to
rewrite this difference as

k∑
j=1

(−1)k−j

(
k

j

){
E

[(
Z′

1Z2 · · ·ZjZ
′
jZ1 − d + p − 1

)
ψx(Sk − Ik)

]

−E
[(

V ′
1V2 · · ·VjV

′
jV1 − d + p − 1

)
ψx

(
S�

k − Ik

)]}

=
k∑

j=1

(−1)k−j

(
k

j

){
E

[
ddeg(Gj )

(
Gj −E[Gj ]

)
ψx(Sk − Ik)

]
(4.23)

−E
[
d

deg(G�
j )(

G�
j −E

[
G�

j

])
ψx

(
S�

k − Ik

)]}

+
k∑

j=1

(−1)k−j

(
k

j

)
(p − 1)

{
E

[
ψx(Sk − Ik)

] −E
[
ψx

(
S�

k − Ik

)]}
,

where Gj is shorthand for Z′
1Z1/d −1 if j = 1 and for Z′

1Z2 · · ·ZjZ
′
jZ1/d

j if j > 1, and where
G�

j denotes the corresponding quantity computed from the Vi . Clearly, E[G1] = 0, while, for j >

1, E[Gj ] = d−j+1, which verifies the equality in the previous display. Now the expected value
in the last line of the preceding display can be treated similarly to (4.22) with l = k. Noting that
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(p − 1)
∑k

j=1(−1)k−j
(
k
j

) = (p − 1), we see that the expression in the last line of the preceding
display is bounded, in absolute value and uniformly in x ∈ SM,p , by (4.1) for constants as in
(4.3). We are left with the first sum on the right-hand side in (4.23). Recalling that ψx(Sk − Ik)

and ψx(S
�
k − Ik) are both weighted sums of monomials, we can rewrite this sum as

k∑
j=1

(−1)k−j

(
k

j

) ∑
H∈Mk

C(H)
{
E

[
ddeg(Gj )

(
Gj −E[Gj ]

)
H

]
(4.24)

−E
[
d

deg(G�
j )(

G�
j −E

[
G�

j

])
H�

]}
,

where Mk and C(H), H ∈ Mk , are as in Proposition 4.3, and where H� is defined as H

but with the Zi replaced by the Vi . Note that (4.24) is a weighted sum of expressions of the
form (4.19), where Gj and G�

j are given by (4.21) defined with the Zi and the Vi respec-
tively. The coefficients C(H) of the terms in the polynomial ϕx(Sk − Ik), as defined in Proposi-
tion 4.3, can be bounded, in absolute value and uniformly in x ∈ SM,p , by pkM2(k+2)Cψ(k).
And using Proposition 4.5(iii), the difference of expectations in (4.24) can be bounded by
d−min{ξ,1/2}(β(α + 1) + β�(α� + 1) + β2 + β�2

), unless the case (a), (b), or (c) in Proposi-
tion 4.5(iii) occurs. Taken together, it is now elementary to verify that those terms in (4.24) that
do not correspond to the cases (a), (b), or (c) in the proposition are bounded, in absolute value
and uniformly in x ∈ SM,p , by an expression of the form (4.1) with constants as in (4.3).

To deal with the remaining terms in (4.24), consider first those terms where Gj and H are as
in case (a) of Proposition 4.5(iii). For each of these terms, the monomial H is of the form (Sk −
Ik)a,a for some a with 1 ≤ a ≤ j . Because the coefficients C(H) are invariant under permutations
in the sense of Proposition 4.3, we see that the coefficient C(H) is the same number whenever
case (a) occurs, and we denote this number by C(a) in the following. Moreover, whenever Gj and
H are such that the case (a) occurs, then the difference in expectations in (4.24) is equal to the
same number, namely Var[Z′

1Z1]/d − 2, by Proposition 4.5(iii). Finally, for fixed j (and hence
for fixed Gj ), we note that the number of monomials H , where Gj and H are as in case (a), is
equal to j . Putting the pieces together, we see that the combined contribution of those terms in
(4.24), where Gj and H are as in case (a) of Proposition 4.5(iii), is equal to

C(a)
(
Var

[
Z′

1Z1
]
/d − 2

) k∑
j=1

(
k

j

)
(−1)k−j j.

But the sum in the preceding display can be written as k
∑k−1

j=0

(
k−1
j

)
(−1)k−1−j = k(1−1)k−1 =

0 (recall that we have chosen k = 4 here). Hence, the combined contribution of these terms is
zero.

Consider now those terms in (4.24) where Gj and H are as in case (b) of Proposition 4.5(iii).
For each of these terms, the monomial H is of the form (Sk − Ik)a,b for some a and b with
1 ≤ a < b ≤ j . As in the preceding paragraph, we see that the coefficient C(H) is the same
number whenever case (b) occurs, and we denote this number by C(b); cf. Proposition 4.3. And
whenever Gj and H are such that the case (b) occurs, then the difference in expectations in (4.24)
is equal to the same number, namely E[(Z′

1Z1)
3]/d ; cf. Proposition 4.5(iii). Finally, for fixed j
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(and hence for fixed Gj ), there are
(
j
2

)
monomials H so that Gj and H are as in case (b). The

contribution of those terms in (4.24), where Gj and H are as in case (b) of Proposition 4.5(iii),
is therefore equal to

C(b)E
[(

Z′
1Z1

)3
/d

] k∑
j=1

(
k

j

)
(−1)k−j

(
j

2

)
.

The sum in the preceding display can be written as
(
k
2

)∑k−2
j=0

(
k−2
j

)
(−1)k−2−j = 0. A similar

argument shows that the combined contribution of the terms where case (c) occurs is also zero.
In summary, we see, under the assumptions of Theorem 2.1(ii), that the difference of (4.15)

and (4.17) as well as the difference of (4.16) and (4.18) can be bounded by (4.1) in absolute value,
uniformly in x ∈ SM,p , and for constants as in (4.3). With this, also the proof of Theorem 2.1(ii)
is complete.
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[13] Plucińska, A. (1983). On a stochastic process determined by the conditional expectation and the con-
ditional variance. Stochastics 10 115–129. MR0716819

[14] Qu, A., Lindsay, B.G. and Lu, L. (2010). Highly efficient aggregate unbiased estimating functions ap-
proach for correlated data with missing at random. J. Amer. Statist. Assoc. 105 194–204. MR2656049

[15] Steinberger, L. (2015). Statistical inference in high-dimensional linear regression based on simple
working models. Ph.D. thesis, University of Vienna.

[16] Steinberger, L. and Leeb, H. (2016). Supplement to “On conditional moments of high-dimensional
random vectors given lower-dimensional projections.” DOI:10.3150/16-BEJ888SUPP.

[17] Steinberger, L. and Leeb, H. (2016). Prediction when fitting simple models to high-dimensional data.
Working paper.

[18] Tarpey, T. and Sanders, R.D. (2004). Linear conditional expectation for discretized distributions.
J. Appl. Stat. 31 361–372. MR2061388

[19] Wesołowski, J. (1993). Stochastic processes with linear conditional expectation and quadratic condi-
tional variance. Probab. Math. Statist. 14 33–44. MR1267516

Received June 2014 and revised June 2016

http://www.ams.org/mathscinet-getitem?mr=3099110
http://dx.doi.org/10.1214/12-AOS1081SUPP
http://www.ams.org/mathscinet-getitem?mr=1137117
http://www.ams.org/mathscinet-getitem?mr=0716819
http://www.ams.org/mathscinet-getitem?mr=2656049
http://dx.doi.org/10.3150/16-BEJ888SUPP
http://www.ams.org/mathscinet-getitem?mr=2061388
http://www.ams.org/mathscinet-getitem?mr=1267516

	Introduction
	Informal summary
	Outline of results

	Results
	Examples and extensions
	Examples
	Improved bounds
	The case of a general covariance matrix

	Proof of Theorem 2.1
	Two crucial bounds
	Changing the reference measure
	The joint density of the "rotational clones"
	Two sufﬁcient conditions
	Approximating the density ratio
	Comparing the approximating quantities with Gaussian expressions

	Acknowledgments
	Supplementary Material
	References

