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Abstract This paper first reduces the problem of detecting structural breaks in a
random walk to that of finding the best subset of explanatory variables in a regression
model and then tailors various subset selection criteria to this specific problem. Of
particular interest are those new criteria, which are obtained by means of simulation
using the efficient algorithm of Bai and Perron (J Appl Econom 18:1–22, 2003). Unlike
conventional variable selection methods, which penalize new variables entering a
model either in the same way (e.g., AIC and BIC) or milder (e.g., MRIC and FPEsub)
than already included variables, they do not follow any monotonic penalizing scheme.
In general, their non-monotonicity is more pronounced in the case of fat tails. The
characteristics of the different criteria are illustrated using bootstrap samples from the
Nile data set.

Keywords Breaks in the drift · Random walk · Subset selection · Variable selection
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1 Introduction

Estimating the number of breaks in the drift of a random walk requires balancing
model fit and model complexity. This can be done with the help of a model selection
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2586 E. Reschenhofer et al.

criterion like AIC (Akaike 1973) or BIC (Schwarz 1978). An alternative approach is
to use the sequential testing procedure proposed by Bai and Perron (1998, 2003). A
big advantage of this procedure is that it allows for general forms of serial correlation
and heteroscedasticity. However, the results of simulation experiments (Bai and Perron
2006) show that in all cases except the base case, where there is neither serial correlation
nor heterogeneity across segments, considerable care should be taken in choosing a
required trimming parameter, which is inversely related to the minimal length of a
segment.

In this paper, we focus on the first method. For the simplest case of an independent
normal sequence with shifts in the mean, Yao (1988) established the consistency of
estimating the number of breaks by minimizing the Bayesian information criterion

B I C(k) = n log

(
RSS(k)

n

)
+ p log(n) (1)

Schwarz (1978), where RSS(k) is obtained by minimization of the residual sum of
squares over all sets of k breakpoints and p is the total number of model parameters that
have to be estimated. When all q regression parameters of a linear regression model are
subject to change and the variance of the errors is constant, there are p = q(k +1)+1
conventional model parameters (excluding the k break dates). In the simplest case,
where the model describes only shifts in the mean, we have q = 1. Yao and Au (1989)
proved the consistency of a class of criteria satisfying certain conditions (for improved
results see Kuehn 2001). Liu et al. (1997) compared a particular element of this class,
namely

Y A(k) = n log

(
RSS(k)

n

)
+ pc1nα (2)

with c1 = 0.368 and α = 0.7, to BIC as well as to their modified BIC

LW Z(k) = n log

(
RSS(k)

n − p

)
+ pc0(log(n))2+δ0

= n log

(
RSS(k)

n

)
+ n log

(
n

n − p

)
+ pc0(log(n))2+δ0 (3)

with c0 = 0.299 and δ0 = 0.1. Their simulations suggest that both YA and LWZ
outperform BIC in a simple framework with only two breaks. In a further simulation
study (Perron 1997), BIC and LWZ performed reasonably well in the absence of serial
correlation. In contrast, Akaike’s information criterion

AI C(k) = n log

(
RSS(k)

n

)
+ 2p (4)

performed very badly. Bai and Perron (2006) found that LWZ worked better than BIC
under the null hypothesis of no break but performed much worse under the alterna-
tive hypothesis because of its higher penalty. They did not consider AIC any further
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Non-monotonic penalizing for the number of structural breaks 2587

because of its bad performance in Perron’s (1997) study. Unfortunately, penalizing
the number of breaks in addition to the regular parameters (Ninomiya 2005) has only
a slight toughening effect on AIC. We therefore take another approach. By rewriting
the structural-break problem as a subset-selection problem we avoid to distinguish
between regular and non-regular parameters and obtain penalties which are compara-
ble to those of YA and LWZ. However, our penalties have the advantage that they do
not depend on constants like c1 and α or c0 and δ0, which are often chosen arbitrarily
or based on simulation studies. Also the BIC in its standard form has been derived by
ignoring a remainder term (Schwarz 1978), which depends on the specification of the
prior distributions for the model parameters. Different priors imply different remain-
der terms and therefore also different versions of BIC (see, e.g., Kass and Wasserman
1995; Reschenhofer 1996).

The estimation of linear regression models with multiple breaks and unknown break
dates poses not only a statistical but also a numerical problem. A simple grid search
procedure to find the k break dates, which minimize the sum of squared residuals
globally, requires least squares operations of order O(nk) and is therefore only feasible
if k is small. In our simulations and our empirical analysis we have therefore used the
efficient algorithm of Bai and Perron (2003), which is based on the principle of dynamic
programming and requires at most least squares operations of order O(n2) for any k.

In the next section, we will extend the bias correction approach, on which the AIC
is based, to the task of estimating the number of breaks. Section 3 presents the results
of an empirical investigation. Section 4 concludes.

2 Tailoring criteria for the estimation of the number of breaks

Let

yt = μt + εt (5)

be the increments of a random walk with drift, whose innovations εt are i.i.d. with
mean 0 and variance σ 2. We assume that k breaks in the drift μt occur at times
1 < t1 < · · · < tk < n, i.e.,

μt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ(1),

...

μ(k),

μ(k+1),

0 = t0 < t ≤ t1,
...

tk−1 < t ≤ tk,

tk < t.

(6)

The problem of estimating the number and the dates of the breaks can be reduced to
the problem of selecting the optimal submodel

y = XSβS + ε
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of the linear regression model

y = Xβ + ε, (7)

where

X =

⎛
⎜⎜⎜⎝

1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎟⎠ (8)

and XS is a submatrix of columns of X. The total number of columns of the matrix
X determines the number of candidate submatrices for each dimension. For example,
for n = 100 there are 100 submatrices with 1 column, 4,950 submatrices with 2
columns, 161,700 submatrices with 3 columns, etc. A disadvantage of using criteria
such as AIC and BIC for the selection of the best submodel (submatrix) is that they
do not take these differences into account. They just penalize the best submodel of
each dimension in the same way as in the case of nested models, where there is only
one submodel for each dimension. In contrast, specially designed subset selection
criteria like RIC (Foster and George 1994), MRIC (George and Foster 2000), FPEsub
(Reschenhofer 2004), and FPE0 (Reschenhofer et al. 2012) take also the respective
numbers of submodels into account when they compare different model dimensions.
The last two criteria may be regarded as extensions of the bias correction approach, on
which criteria like AIC and FPE (Rothman 1968; Akaike 1969) are based, to the case
of non-nested models. In the following, we adapt these two criteria for the specific
task at hand, namely the estimation of the number of breaks in the drift of a random
walk.

If a fixed submodel of dimension K , which is represented by a subset S of K column
indices, is correctly specified, i.e., if

E ŷS = E XSβ̂S = E XS(X′
SXS)−1X′

Sy = μ,

then

σ̂ 2
S = 1

n − K
RSS(S) = 1

n − K

∥∥y − ŷS
∥∥2 (9)

will be an unbiased estimator of σ 2 and

FPE(S) = RSS(S)
n + K

n − K
(10)

will be an unbiased estimator of the mean squared prediction error

MSPE(S) = E
∥∥z − ŷS

∥∥2
,
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where z is an independent sample from the same distribution as y. For large n, model
selection by FPE is practically equivalent to model selection by AIC, because

n log(F P E(S)) = n log

(
RSS(S)

(
1 + 2K

n − K

))

= n log(RSS(S)) + log

((
1 + 2K

n − K

)n)

∼ n log(RSS(S)) + 2K ,

which differs from

AI C(S) = n log

(
RSS(S)

n

)
+ 2(K + 1) (11)

only by the additive constant −n log(n) + 2. In general, additive penalties Pa can be
obtained from multiplicative penalties Pm via the transformation

Pa(K ) = n log(Pm(K )). (12)

Turning to the case of non-nested models, we will now compare different model
dimensions rather than different fixed models. Accordingly, we will consider that
submodel of dimension K , which minimizes the residual sum of squares, rather than
a fixed submodel of dimension K . Let ŷK denote that estimator of μ which is based
on the best submodel of dimension K . Then

FPEsub(K ) = RSS(K )
n + ζ1(K , N )

n − ζ1(K , N )
, (13)

where N is the number of potential regressors (in our case N equals n) and ζ1(K , N )

is the expected value of the sum of the K largest of N independent χ2(1)-variables,
will be an unbiased estimator of

MSPE(K ) = E
∥∥z − ŷK

∥∥2
,

provided that the regressors are orthogonal and the theoretical regression coefficients
vanish (see Reschenhofer 2004). In the next two subsections, we will try to relax these
apparently very restrictive conditions.

2.1 Relaxing the assumption of vanishing regression coefficients

Under the assumption of vanishing regression coefficients, it seems okay to use
ζ1(K , N ) as benchmark for assessing the effect of the apparently most important
subset of size K . However, if there are K − 1 dominant regressors, which are certain
to be selected, there are only N − K + 1 regressors remaining, which may be selected
in addition to the certain regressors. For the assessment of the importance of the first
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of the remaining regressors, it might be more appropriate to regard it as the most
important in a random sample of size N − K + 1 rather than as the K th most impor-
tant in a random sample of size N . Unfortunately, the obvious alternative to replace
the term ζ1(K , N ), which occurs both in the numerator and in the denominator of
the multiplicative penalty of FPEsub, by the sum ζ1(1, N ) + · · · + ζ1(1, N − K + 1)

(Reschenhofer et al. 2012) has the disadvantage that the denominator can become very
small even if K is not very large. We therefore propose a new criterion, FPE�, which
is more stable and still avoids overfitting in the presence of some dominant regressors.
Its additive penalty terms are given recursively by

Pa�(K ) = Pa�(K − 1) + n log

(
n + (K − 1) + ζ1(1, N − (K − 1))

n − (K − 1) − ζ1(1, N − (K − 1))

)

−n log

(
n + (K − 1)

n − (K − 1)

)
. (14)

In the practically more relevant case, where the first regressor is certain to be
included, we have

Pa�(1) = n log

(
n + 1

n − 1

)
.

Otherwise, if all regressors are treated equally, the first penalty would be

n log

(
n + ζ1(1, N )

n − ζ1(1, N )

)
.

In contrast to conventional criteria like AIC and BIC, FPE� penalizes the first
regressors to be included more than the later ones. However, the decline is insignificant
as long as K is small compared to n (see Fig. 1). Using the approximation

ζ̂1(1, N ) = 2 log(N ) − log(log(N ))

Reschenhofer (2004) we arrive at the simpler criterion FPEδ , whose additive penalty
terms are given by elementary functions, i.e.,

Pa
δ (K ) = Pa

δ (K − 1) + n log

(
n + (K − 1) + ζ̂1(1, N − (K − 1))

n − (K − 1) − ζ̂1(1, N − (K − 1))

)

−n log

(
n + (K − 1)

n − (K − 1)

)
. (15)

2.2 Relaxing the orthogonality assumption

Even in the case of a pure random sample, there is a good chance of observing a
cluster of very small or very large values. A certain reduction in the residual sum of
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Fig. 1 Increments Pa(K ) − Pa(K − 1), K = 2, . . . , 10 of the additive penalties of the model selection
criteria AIC (red), FPE (pink), BIC (orange), YA (yellow), LWZ (brown), FPE∗

sub (lightgreen), FPE∗
sim

(darkgreen), FPE� (lightblue), FPEδ (darkblue), FPEt (4) (lightgray) (color figure online)

squares may then be achieved by introducing a structural break either at the start or
at the end of this cluster. Clearly, the introduction of a second break (at the other end)
will in general have a much larger effect. Thus, the second break should be penalized
much harsher than the first. Similarly, the fourth breakpoint should be penalized more
than the third (two clusters of extreme values), the sixth more than the fifth (three
clusters), and so on. Following this line of reasoning, we end up with a completely
new concept of penalizing, i.e., non-monotonic penalizing, which differs crucially
from the conventional approach of using either constant increments in the penalties
(e.g., AIC and BIC) or declining increments (e.g., MRIC, and FPEsub). A precise
description of this non-monotonicity has been obtained with the help of simulations.
The details are given subsequently.

In the following, we will always include the first column of X in the submatrix XS.
Accordingly, we must use a slightly modified version of FPEsub, i.e.,

FPE∗
sub(K ) = RSS(K )

n + 1 + ζ1(K − 1, N − 1)

n − 1 − ζ1(K − 1, N − 1)
, (16)

as benchmark for our simulation study. In this study, r = 100,000 random samples
y(i) and z(i) of size n = 250 from a standard normal distribution are generated and
the ideal multiplicative penalties are approximated by the ratios

∑r
i=1

∥∥z(i) − ŷK (i)
∥∥2

∑r
i=1

∥∥y(i) − ŷK (i)
∥∥2
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or, computationally more efficiently, just by

R(K ) =
∑r

i=1

(
n + ∥∥ŷK (i)

∥∥2
)

∑r
i=1

∥∥y(i) − ŷK (i)
∥∥2

(for all computations and graphics we use the free software environment R; see R
Development Core Team 2011). The associated model selection criterion is given by

FPE∗
sim(K ) = RSS(K )R(K ). (17)

Figure 1 compares the penalties of FPE∗
sub and FPE∗

sim . More precisely, the increments

Pa(K ) − Pa(K − 1)

of the corresponding additive penalties Pa are displayed.
In our case, the discrepancies between FPE∗

sub and FPE∗
sim are much larger than

those observed for macroeconomic data by Reschenhofer et al. (2012). Most striking
is the non-monotonicity of the FPE∗

sim increments. The peaks at K = 3 and K = 5
can be explained by the fact that we need in general three regimes for the description
of one extreme observation (or one cluster of extreme observations), five regimes
for two extreme observations, etc. This pattern becomes more apparent when the
likelihood of extreme values is increased, e.g., by using the t-distribution with 4 degrees
of freedom instead of the normal distribution to generate the random samples. The
resulting criterion is called FPEt (4).

In contrast to conventional applications, where the set of candidate variables is
different every time, our design matrix X always has the same form. It is therefore
worthwhile to calculate our penalties for a large number of sample sizes and put the
results into tables, which allow using our criteria without having to re-simulate. Tables
2 and 3 contain the non-monotonic increments in the penalties of the criteria FPE∗

sim
and FPEt (4) for n = 20, 30, . . . , 250. Overall penalties can be obtained by calculating
cumulative sums starting at 2.0 (K = 1: one certain regressor).

3 Empirical results

To illustrate the performance of our new non-monotonic (FPE∗
sim and FPEt (4)) and

monotonic (FPEδ) criteria we analyze the measurements of the annual flow of the
river Nile at Aswan 1871–1970 (see, e.g., Cobb 1978; Zeileis et al. 2003). It is widely
accepted that, due to the construction of the Aswan dam, there is a single structural
break in 1898 (see Fig. 2). However, without further provisions AIC and BIC select a
large number of additional breaks. Taking ad-hoc measures like imposing the restric-
tion of a minimal regime length or treating the break dates as ordinary regression
parameters is not a satisfactory solution. Firstly, there may well be applications where
even individual observations must be modeled as separate regimes. Secondly, using
asymptotic arguments it can be shown that break dates require a different treatment
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Fig. 2 Single break fit to the Nile data

Table 1 Proportion of single-break detection (Correct), mean number of selected breaks (Mean) and
standard deviation (SD) of selected breaks for 100,000 samples drawn from the Nile data

AIC BIC FPE∗
sim FPEt (4) FPEδ YA LWZ

Correct 0.000 0.000 0.983 1.000 0.998 0.892 0.841

Mean 9.000 7.672 1.031 1.000 1.002 1.133 1.229

SD 0.012 1.948 0.323 0.000 0.047 0.433 0.635

than ordinary regression parameters (see Ninomiya 2005). Instead of just mending
improper methods it seems therefore much better to try different approaches. Indeed,
YA, LWZ, and all of our new criteria select only one break. Of course, this compari-
son is not conclusive because it is based on only one sample. In order to get a more
comprehensive assessment, we proceed as follows: (i) Calculate the means x̄1 and
x̄2 for the two regimes 1871–1898 and 1899–1970 and the corresponding residuals
û1, . . . , û28 and v̂1, . . . , v̂72. (ii) Draw û∗

1, . . . , û∗
28 and v̂∗

1 , . . . , v̂∗
72 from the empirical

distribution of the residuals in the first and second regime, respectively. (iii) Generate
a sample

(x̄1 + û∗
1, . . . , x̄1 + û∗

28, x̄2 + v̂∗
1 , . . . , x̄2 + v̂∗

72). (18)

(iv) Estimate the number of structural breaks using AIC, BIC, FPE∗
sim , FPEt (4), FPEδ ,

YA and LWZ with a maximum of nine possible breaks.
The results obtained by repeating steps (ii)–(iv) 100,000 times are summarized

in Table 1. The conventional criteria AIC and BIC come off badly. They are clearly
unsuitable for the detection of breaks. YA and LWZ perform much better but are clearly
outperformed by our new criteria. Although we might, in view of the obvious non-
normality of the data, have expected that the non-monotonic criterion FPEt (4), which
has been designed for the case of fat-tailed distributions, is particularly accurate, its
excellent performance is still striking. It selects the correct model in practically every
single case.
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Fig. 3 One break (selected by FPE∗
sim , FPEt (4) and FPEδ), two break (selected by YA and LWZ) and

nine break (selected by AIC and BIC) solution for one specific sample drawn from the Nile data

To illustrate the possible effect of extreme observations, we present one specific
synthetic sample generated as outlined above. In this specific sample, a very small
observation occurs just after the break (see Fig. 3). In the best solution with two
breaks, the second regime consists only of this single observation. This wrong solution
is chosen by both YA and LWZ. As usual, AIC and BIC select the maximum number
of breaks. The plot of the solution selected by AIC and BIC (see Fig. 3) shows that
these criteria poorly distinguish signal from noise.

4 Discussion

In the light of Kempthorne’s (1984) finding that all post-model-selection estimators
are admissible, Kabaila’s (2002) criticism that Shibata’s (1980, 1981) asymptotic
optimality results for the AIC hold only pointwise and may therefore be misleading,
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Table 2 Increments Pa(K )− Pa(K −1), K = 2, . . . , 10, of the additive penalties of the criterion FPE∗
sim

for different sample sizes n

n K

2 3 4 5 6 7 8 9 10

20 7.2 8.0 6.2 6.0 5.7 5.7 5.7 5.9 6.2

30 7.8 9.1 6.8 6.6 6.1 5.9 5.7 5.7 5.7

40 8.2 10.0 7.3 7.1 6.4 6.2 6.0 5.8 5.7

50 8.5 10.7 7.7 7.5 6.8 6.5 6.2 6.1 5.9

60 8.7 11.3 8.0 7.9 7.1 6.9 6.5 6.3 6.1

70 8.9 11.8 8.3 8.3 7.4 7.1 6.8 6.5 6.3

80 9.0 12.3 8.6 8.6 7.7 7.4 7.0 6.8 6.5

90 9.2 12.7 8.9 8.9 8.0 7.7 7.2 7.0 6.7

100 9.3 13.0 9.1 9.2 8.2 7.9 7.4 7.2 6.9

110 9.4 13.4 9.3 9.4 8.4 8.1 7.6 7.4 7.1

120 9.5 13.7 9.4 9.7 8.5 8.3 7.8 7.6 7.3

130 9.6 13.9 9.6 9.9 8.7 8.5 8.0 7.7 7.4

140 9.7 14.2 9.7 10.1 8.9 8.6 8.2 7.9 7.6

150 9.8 14.5 9.9 10.3 9.0 8.8 8.3 8.0 7.7

160 9.8 14.7 10.0 10.4 9.2 9.0 8.4 8.2 7.9

170 9.9 14.9 10.1 10.6 9.3 9.1 8.6 8.3 8.0

180 10.0 15.1 10.2 10.8 9.4 9.3 8.7 8.4 8.1

190 10.0 15.3 10.3 10.9 9.6 9.4 8.8 8.6 8.2

200 10.1 15.5 10.4 11.1 9.7 9.5 8.9 8.7 8.4

210 10.1 15.7 10.5 11.2 9.8 9.6 9.1 8.8 8.5

220 10.2 15.8 10.6 11.3 9.9 9.7 9.2 8.9 8.6

230 10.2 16.0 10.7 11.5 10.0 9.9 9.3 9.0 8.7

240 10.3 16.1 10.8 11.6 10.1 10.0 9.4 9.1 8.8

250 10.3 16.3 10.9 11.7 10.2 10.1 9.4 9.2 8.9

Each value is based on 100,000 random samples of size n from a normal distribution

and Yang’s (2005, 2006) conclusion that no model selection criterion can share the
main strengths of AIC (pointwise asymptotic optimality in nonparametric scenarios)
and BIC (consistency in parametric scenarios) simultaneously, we cannot hope to find
anything like a universally best model selection criterion. However, we could try to
find a method for assessing whether AIC or BIC is more appropriate for a specific
dataset. Unfortunately, such a method will typically depend on tuning parameters (Liu
and Yang 2011). Moreover, more than one assessment method might be proposed.
So instead of just selecting the model selection criterion we would have to select
the assessment method first which we could then use to select the model selection
criterion. On top of that, it is not a priori clear why we should content ourselves with
only AIC and BIC. These criteria have been designed for non-nested models. None of
the two takes the total number of candidate models into account. In general, even the
BIC-penalties are much too small to ensure consistency for selecting among non-nested
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Table 3 Increments Pa(K )− Pa(K −1), K = 2, . . . , 10, of the additive penalties of the criterion FPEt (4)

for different sample sizes n

n K

2 3 4 5 6 7 8 9 10

20 7.7 13.0 6.3 6.7 5.8 5.9 5.8 6.0 6.3

30 8.4 16.4 6.9 7.7 6.3 6.2 5.9 5.8 5.8

40 8.9 19.8 7.5 8.8 6.7 6.8 6.2 6.1 5.9

50 9.2 22.1 8.0 9.8 7.2 7.3 6.5 6.4 6.1

60 9.5 24.7 8.3 10.7 7.6 7.8 6.9 6.8 6.4

70 9.7 27.0 8.7 11.6 7.9 8.4 7.2 7.1 6.7

80 9.9 29.5 9.0 12.4 8.3 8.9 7.5 7.5 7.0

90 10.0 31.6 9.2 13.3 8.5 9.4 7.8 7.9 7.2

100 10.2 33.7 9.5 14.1 8.8 9.9 8.1 8.2 7.5

110 10.3 35.2 9.7 14.8 9.1 10.4 8.4 8.5 7.7

120 10.5 37.3 9.9 15.6 9.3 10.8 8.6 8.9 7.9

130 10.5 39.3 10.0 16.3 9.5 11.3 8.8 9.2 8.2

140 10.7 41.2 10.2 17.0 9.7 11.7 9.0 9.5 8.4

150 10.7 42.7 10.4 17.7 9.9 12.1 9.3 9.8 8.6

160 10.9 44.5 10.5 18.4 10.1 12.6 9.4 10.1 8.8

170 10.9 46.3 10.6 19.1 10.3 13.0 9.6 10.4 9.0

180 10.9 47.2 10.8 19.7 10.4 13.4 9.8 10.7 9.2

190 11.0 48.6 10.9 20.4 10.5 13.8 10.0 11.0 9.3

200 11.0 50.8 11.0 20.9 10.7 14.2 10.2 11.3 9.5

210 11.1 53.1 11.1 21.5 10.8 14.6 10.3 11.6 9.7

220 11.2 53.4 11.2 22.2 11.0 15.0 10.4 11.9 9.8

230 11.3 54.9 11.3 22.8 11.1 15.3 10.6 12.1 10.0

240 11.3 55.8 11.4 23.4 11.2 15.7 10.7 12.4 10.1

250 11.3 57.5 11.5 23.9 11.3 16.1 10.8 12.7 10.2

Each value is based on 100,000 random samples of size n from a t distribution with 4 degrees of freedom

models (Sin and White 1996; Hong and Preston 2012). It might therefore make more
sense to tailor different model selection criteria to the different types of applications
rather than to look for some universal criterion. Our paper focuses on a very specific
application, namely the detection of structural breaks in a simple regression model.

The variable selection criteria YA and LWZ have been put to use for the detection
of structural breaks in financial time series (see, e.g., Zeileis et al. 2010) because of
the inadequate performance of AIC (see, e.g., Perron 1997) and BIC (see, e.g., Liu
et al. 1997; Zeileis et al. 2003). They differ from these standard criteria only in the
size of their penalties. They just penalize harder but still treat all breaks in the same
way. There is a simple linear relationship between the size of the penalty and the
number of breaks. In contrast, all of the criteria proposed in this paper are genuine
subset selection criteria and take therefore also the much larger number of potential
breakpoints into account. Our new criteria are obtained from existing subset selection
criteria by relaxing two simplifying assumptions, that of orthogonal regressors and
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that of vanishing regression coefficients. The relaxation of the second assumption
yields a criterion which outperforms YA and LWZ in our empirical study. Moreover,
unlike YA and LWZ, it does not depend on the specification of tuning parameters.
Finally, the relaxation of the first assumption yields criteria with penalties that exhibit
a specific type of non-monotonicity. This non-monotonicity is positively related to the
likelihood of extreme values and negatively to serial dependencies such as conditional
heteroscedasticity. Such a pattern appears striking at first sight, but much less so on
closer inspection. Clearly, we cannot expect that a cluster of unusual observations
occurs just at the begin or at the end of the observation period. More likely, it will
occur somewhere in the middle and therefore require two breaks (three regimes) for its
description. Consequently, the penalty for the second break should be higher than that
for the first. An analogous argument holds for the case of 2, 3, . . . clusters of unusual
observations, where 5, 7, . . . regimes will be needed.

In summary, we recommend to use the non-monotonic criteria FPE∗
sim and FPEt (4)

(see Tables 2 and 3) in situations where it is a priori not clear whether there are any
structural breaks at all. FPE∗

sim is more appropriate in the Gaussian case and FPEt (4) in
the case of fat-tailed distributions (e.g., in financial applications). In situations where
it is clear that some major breaks exist and the only question is whether there are also
some minor breaks, the criterion FPEδ should be used.
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